# https://github.com/yl4579/StyleTTS2/blob/main/models.py from .istftnet import AdainResBlk1d from torch.nn.utils import weight_norm from transformers import AlbertModel import numpy as np import torch import torch.nn as nn import torch.nn.functional as F class LinearNorm(nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias) nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) class TextEncoder(nn.Module): def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): super().__init__() self.embedding = nn.Embedding(n_symbols, channels) padding = (kernel_size - 1) // 2 self.cnn = nn.ModuleList() for _ in range(depth): self.cnn.append(nn.Sequential( weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), LayerNorm(channels), actv, nn.Dropout(0.2), )) self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True) def forward(self, x, input_lengths, m): x = self.embedding(x) # [B, T, emb] x = x.transpose(1, 2) # [B, emb, T] m = m.unsqueeze(1) x.masked_fill_(m, 0.0) for c in self.cnn: x = c(x) x.masked_fill_(m, 0.0) x = x.transpose(1, 2) # [B, T, chn] lengths = input_lengths if input_lengths.device == torch.device('cpu') else input_lengths.to('cpu') x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False) self.lstm.flatten_parameters() x, _ = self.lstm(x) x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) x = x.transpose(-1, -2) x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]], device=x.device) x_pad[:, :, :x.shape[-1]] = x x = x_pad x.masked_fill_(m, 0.0) return x class AdaLayerNorm(nn.Module): def __init__(self, style_dim, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.fc = nn.Linear(style_dim, channels*2) def forward(self, x, s): x = x.transpose(-1, -2) x = x.transpose(1, -1) h = self.fc(s) h = h.view(h.size(0), h.size(1), 1) gamma, beta = torch.chunk(h, chunks=2, dim=1) gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) x = F.layer_norm(x, (self.channels,), eps=self.eps) x = (1 + gamma) * x + beta return x.transpose(1, -1).transpose(-1, -2) class ProsodyPredictor(nn.Module): def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): super().__init__() self.text_encoder = DurationEncoder(sty_dim=style_dim, d_model=d_hid,nlayers=nlayers, dropout=dropout) self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) self.duration_proj = LinearNorm(d_hid, max_dur) self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) self.F0 = nn.ModuleList() self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) self.N = nn.ModuleList() self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) def forward(self, texts, style, text_lengths, alignment, m): d = self.text_encoder(texts, style, text_lengths, m) m = m.unsqueeze(1) lengths = text_lengths if text_lengths.device == torch.device('cpu') else text_lengths.to('cpu') x = nn.utils.rnn.pack_padded_sequence(d, lengths, batch_first=True, enforce_sorted=False) self.lstm.flatten_parameters() x, _ = self.lstm(x) x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]], device=x.device) x_pad[:, :x.shape[1], :] = x x = x_pad duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=False)) en = (d.transpose(-1, -2) @ alignment) return duration.squeeze(-1), en def F0Ntrain(self, x, s): x, _ = self.shared(x.transpose(-1, -2)) F0 = x.transpose(-1, -2) for block in self.F0: F0 = block(F0, s) F0 = self.F0_proj(F0) N = x.transpose(-1, -2) for block in self.N: N = block(N, s) N = self.N_proj(N) return F0.squeeze(1), N.squeeze(1) class DurationEncoder(nn.Module): def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): super().__init__() self.lstms = nn.ModuleList() for _ in range(nlayers): self.lstms.append(nn.LSTM(d_model + sty_dim, d_model // 2, num_layers=1, batch_first=True, bidirectional=True, dropout=dropout)) self.lstms.append(AdaLayerNorm(sty_dim, d_model)) self.dropout = dropout self.d_model = d_model self.sty_dim = sty_dim def forward(self, x, style, text_lengths, m): masks = m x = x.permute(2, 0, 1) s = style.expand(x.shape[0], x.shape[1], -1) x = torch.cat([x, s], axis=-1) x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) x = x.transpose(0, 1) x = x.transpose(-1, -2) for block in self.lstms: if isinstance(block, AdaLayerNorm): x = block(x.transpose(-1, -2), style).transpose(-1, -2) x = torch.cat([x, s.permute(1, 2, 0)], axis=1) x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) else: lengths = text_lengths if text_lengths.device == torch.device('cpu') else text_lengths.to('cpu') x = x.transpose(-1, -2) x = nn.utils.rnn.pack_padded_sequence( x, lengths, batch_first=True, enforce_sorted=False) block.flatten_parameters() x, _ = block(x) x, _ = nn.utils.rnn.pad_packed_sequence( x, batch_first=True) x = F.dropout(x, p=self.dropout, training=False) x = x.transpose(-1, -2) x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]], device=x.device) x_pad[:, :, :x.shape[-1]] = x x = x_pad return x.transpose(-1, -2) # https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py class CustomAlbert(AlbertModel): def forward(self, *args, **kwargs): outputs = super().forward(*args, **kwargs) return outputs.last_hidden_state