File size: 15,312 Bytes
4ee899e
 
d98eeb4
d311010
 
 
d98eeb4
d311010
 
 
 
 
 
 
 
4ee899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e835581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdee591
4ee899e
a308b4d
6983824
 
4ee899e
2b1c947
 
 
 
 
 
 
 
4ee899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe6bfd
4ee899e
2fe6bfd
 
 
 
 
4ee899e
2fe6bfd
 
 
 
 
 
4ee899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdee591
4ee899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdee591
4ee899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68e0e60
 
4ee899e
 
 
 
 
 
 
 
2fe6bfd
4ee899e
2fe6bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d3967
 
 
785db47
14d3967
 
 
 
2fe6bfd
 
 
 
 
 
 
 
 
 
14d3967
 
785db47
fc92e60
14d3967
 
2fe6bfd
 
4ee899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c690c8e
4ee899e
 
4280834
4ee899e
 
68e0e60
c3e1669
 
68e0e60
 
 
 
 
 
 
4ee899e
68e0e60
 
 
 
 
 
 
 
 
4ee899e
 
 
 
 
68e0e60
4ee899e
 
 
 
 
 
 
 
 
68e0e60
c3e1669
3e89074
68e0e60
4ee899e
 
 
 
 
 
 
 
 
1b69833
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"')
from huggingface_hub import HfApi, upload_file
import os
import uuid

import subprocess
import tempfile
import logging
import shutil
import os
from huggingface_hub import HfApi, upload_file
from datetime import datetime
import uuid

# Actual demo code
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
from huggingface_hub import hf_hub_download


MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"

HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/wan22lora-text-img-video-analysis")
from huggingface_hub import HfApi, upload_file
import os
import uuid
import os
import uuid
import logging
from datetime import datetime
def upscale_and_upload_4k(input_video_path: str, input_image, summary_text: str) -> str:
    """
    Upscale a video to 4K and upload it to Hugging Face Hub along with the input image and a text summary.

    Args:
        input_video_path (str): Path to the original video.
        input_image (PIL.Image.Image or path-like): Input image to upload alongside the video.
        summary_text (str): Text summary or prompt to upload alongside the video.

    Returns:
        str: Hugging Face folder path where the video, image, and summary were uploaded.
    """
    logging.info(f"Upscaling video to 4K for upload: {input_video_path}")

    # --- Upscale video ---
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
        upscaled_path = tmp_upscaled.name

    cmd = [
        "ffmpeg",
        "-i", input_video_path,
        "-vf", "scale=3840:2160:flags=lanczos",
        "-c:v", "libx264",
        "-crf", "18",
        "-preset", "slow",
        "-y",
        upscaled_path,
    ]
    try:
        subprocess.run(cmd, check=True, capture_output=True)
        logging.info(f"✅ Upscaled video created at: {upscaled_path}")
    except subprocess.CalledProcessError as e:
        logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
        raise

    # --- Create HF folder ---
    today_str = datetime.now().strftime("%Y-%m-%d")
    unique_subfolder = f"upload_{uuid.uuid4().hex[:8]}"
    hf_folder = f"{today_str}-WAN-I2V/{unique_subfolder}"

    # --- Upload video ---
    video_filename = os.path.basename(input_video_path)
    video_hf_path = f"{hf_folder}/{video_filename}"
    upload_file(
        path_or_fileobj=upscaled_path,
        path_in_repo=video_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")

    # --- Upload input image ---
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
        if isinstance(input_image, str):
            import shutil
            shutil.copy(input_image, tmp_img.name)
        else:
            input_image.save(tmp_img.name, format="PNG")
        tmp_img_path = tmp_img.name

    image_hf_path = f"{hf_folder}/input_image.png"
    upload_file(
        path_or_fileobj=tmp_img_path,
        path_in_repo=image_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded input image to HF: {image_hf_path}")

    # --- Upload summary text ---
    summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(summary_text)

    summary_hf_path = f"{hf_folder}/summary.txt"
    upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=summary_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")

    # --- Cleanup temporary files ---
    os.remove(upscaled_path)
    os.remove(tmp_img_path)
    os.remove(summary_file)

    return hf_folder


LORA_REPO_ID = "rahul7star/wan2.2Lora"
LORA_SETS = {
    "NF": {
        "high_noise": {"file": "DR34ML4Y_I2V_14B_HIGH.safetensors", "adapter_name": "nf_high"},
        "low_noise": {"file": "DR34ML4Y_I2V_14B_LOW.safetensors", "adapter_name": "nf_low"}
    },
     "BP": {
         "high_noise": {"file": "Wan2.2_BP-v1-HighNoise-I2V_T2V.safetensors", "adapter_name": "bp_high"},
       "low_noise": {"file": "Wan2.2_BP-v1-LowNoise-I2V_T2V.safetensors", "adapter_name": "bp_low"}
     },
     "Py-v1": {
        "high_noise": {"file": "wan2.2_i2v_highnoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_high"},
         "low_noise": {"file": "wan2.2_i2v_lownoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_low"}
    }
}

LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 576
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81

MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)


pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
    transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer_2',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    torch_dtype=torch.bfloat16,
).to('cuda')



optimize_pipeline_(pipe,
    image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
    prompt='prompt',
    height=LANDSCAPE_HEIGHT,
    width=LANDSCAPE_WIDTH,
    num_frames=MAX_FRAMES_MODEL,
)


for name, lora_set in LORA_SETS.items():
    print(f"---LoRA 集合: {name} ---")

    # 加载 High Noise
    high_noise_config = lora_set["high_noise"]
    print(f"High Noise: {high_noise_config['file']}...")
    pipe.load_lora_weights(LORA_REPO_ID, weight_name=high_noise_config['file'], adapter_name=high_noise_config['adapter_name'])
    print("High Noise LoRA 加载完成。")

    # 加载 Low Noise
    low_noise_config = lora_set["low_noise"]
    print(f" Low Noise: {low_noise_config['file']}...")
    pipe.load_lora_weights(LORA_REPO_ID, weight_name=low_noise_config['file'], adapter_name=low_noise_config['adapter_name'])
    print("Low Noise LoRA ")
print("。")

for i in range(3):
    gc.collect()
    torch.cuda.synchronize()
    torch.cuda.empty_cache()

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"


def resize_image(image: Image.Image) -> Image.Image:
    if image.height > image.width:
        transposed = image.transpose(Image.Transpose.ROTATE_90)
        resized = resize_image_landscape(transposed)
        return resized.transpose(Image.Transpose.ROTATE_270)
    return resize_image_landscape(image)


def resize_image_landscape(image: Image.Image) -> Image.Image:
    target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
    width, height = image.size
    in_aspect = width / height
    if in_aspect > target_aspect:
        new_width = round(height * target_aspect)
        left = (width - new_width) // 2
        image = image.crop((left, 0, left + new_width, height))
    else:
        new_height = round(width / target_aspect)
        top = (height - new_height) // 2
        image = image.crop((0, top, width, top + new_height))
    return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)

def get_duration(
    
    input_image,
    prompt,
    steps,
    negative_prompt,
    duration_seconds,
    guidance_scale,
    guidance_scale_2,
    seed,
    randomize_seed,
    selected_loras,
    progress,
):
    return int(steps) * 15

@spaces.GPU(duration=get_duration)
def generate_video(
    
    input_image,
    prompt,
    steps = 4,
    negative_prompt=default_negative_prompt,
    duration_seconds = MAX_DURATION,
    guidance_scale = 1,
    guidance_scale_2 = 1,
    seed = 42,
    randomize_seed = False,
    selected_loras = [],
    progress=gr.Progress(track_tqdm=True),
):
    

    if input_image is None:
        raise gr.Error("Please upload an input image.")
    print("potmpt is ")    
    print(prompt) 
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = resize_image(input_image)

    num_inference_steps = int(steps)
    switch_step = num_inference_steps // 2

    class LoraSwitcher:
        def __init__(self, selected_lora_names):
            self.switched = False
            self.high_noise_adapters = []
            self.low_noise_adapters = []

            if selected_lora_names:
                for name in selected_lora_names:
                    if name in LORA_SETS:
                        self.high_noise_adapters.append(LORA_SETS[name]["high_noise"]["adapter_name"])
                        self.low_noise_adapters.append(LORA_SETS[name]["low_noise"]["adapter_name"])

        def __call__(self, pipe, step_index, timestep, callback_kwargs):
            # LoRA 状态
            if step_index == 0:
                self.switched = False
                #  LoRA,则激活 High Noise 版本
                if self.high_noise_adapters:
                    print(f"激活 High Noise LoRA: {self.high_noise_adapters}")
                    pipe.set_adapters(self.high_noise_adapters, adapter_weights=[1.0] * len(self.high_noise_adapters))
                    # 🔥 同时 fuse_lora 
                    try:
                      print(f"Fuse High Noise LoRA: {self.high_noise_adapters}")
                      pipe.fuse_lora()
                    except Exception as e:
                        print(f"Fuse High Noise LoRA 失败: {e}")
                    
        
                #  LoRA,则通过将权重设为0来禁用任何可能残留的 LoRA
                elif pipe.get_active_adapters():
                    active_adapters = pipe.get_active_adapters()
                    print(f"未选择 LoRA,通过设置权重为0来禁用残留的 LoRA: {active_adapters}")
                    pipe.set_adapters(active_adapters, adapter_weights=[0.0] * len(active_adapters))

            #Low Noise LoRA(仅当有 LoRA 被选择时)
            if self.low_noise_adapters and step_index >= switch_step and not self.switched:
                print(f"在第 {step_index} 步切换到 Low Noise LoRA: {self.low_noise_adapters}")
                pipe.set_adapters(self.low_noise_adapters, adapter_weights=[1.0] * len(self.low_noise_adapters))
                try:
                   print(f"Fuse Low Noise LoRA: {self.low_noise_adapters}")
                   pipe.fuse_lora()
                except Exception as e:
                     print(f"Fuse Low Noise LoRA 失败: {e}")
                     
                self.switched = True
            return callback_kwargs

    lora_switcher_callback = LoraSwitcher(selected_loras)

    output_frames_list = pipe(
        image=resized_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=resized_image.height,
        width=resized_image.width,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=num_inference_steps,
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
        callback_on_step_end=lora_switcher_callback,
    ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    #upscale_and_upload_4k(video_path, input_image, prompt)
    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# Fast 4 steps Wan 2.2 I2V (14B) with Lightning LoRA")
    gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")

    with gr.Row():   # ensures columns align in height
        with gr.Column():
            input_image_component = gr.Image(
                type="pil",
                label="Input Image (auto-resized to target H/W)",
                interactive=True,
                elem_classes=["flex-image"]
            )

            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(
                minimum=MIN_DURATION,
                maximum=MAX_DURATION,
                step=0.1,
                value=3.5,
                label="Duration (seconds)",
                info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
            )

            lora_selection_checkbox = gr.CheckboxGroup(
                choices=list(LORA_SETS.keys()),
                label="选择要应用的 LoRA (可多选)",
                info="选择一个或多个 LoRA 风格进行组合。"
            )

            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
                guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")

            generate_button = gr.Button("Generate Video", variant="primary")

        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False, elem_classes=["stretch-video"])

    ui_inputs = [
        input_image_component, prompt_input, steps_slider,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox,
        lora_selection_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

if __name__ == "__main__":
    demo.queue().launch()