Spaces:
Paused
Paused
File size: 15,312 Bytes
4ee899e d98eeb4 d311010 d98eeb4 d311010 4ee899e e835581 bdee591 4ee899e a308b4d 6983824 4ee899e 2b1c947 4ee899e 2fe6bfd 4ee899e 2fe6bfd 4ee899e 2fe6bfd 4ee899e bdee591 4ee899e bdee591 4ee899e 68e0e60 4ee899e 2fe6bfd 4ee899e 2fe6bfd 14d3967 785db47 14d3967 2fe6bfd 14d3967 785db47 fc92e60 14d3967 2fe6bfd 4ee899e c690c8e 4ee899e 4280834 4ee899e 68e0e60 c3e1669 68e0e60 4ee899e 68e0e60 4ee899e 68e0e60 4ee899e 68e0e60 c3e1669 3e89074 68e0e60 4ee899e 1b69833 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"')
from huggingface_hub import HfApi, upload_file
import os
import uuid
import subprocess
import tempfile
import logging
import shutil
import os
from huggingface_hub import HfApi, upload_file
from datetime import datetime
import uuid
# Actual demo code
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
from huggingface_hub import hf_hub_download
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/wan22lora-text-img-video-analysis")
from huggingface_hub import HfApi, upload_file
import os
import uuid
import os
import uuid
import logging
from datetime import datetime
def upscale_and_upload_4k(input_video_path: str, input_image, summary_text: str) -> str:
"""
Upscale a video to 4K and upload it to Hugging Face Hub along with the input image and a text summary.
Args:
input_video_path (str): Path to the original video.
input_image (PIL.Image.Image or path-like): Input image to upload alongside the video.
summary_text (str): Text summary or prompt to upload alongside the video.
Returns:
str: Hugging Face folder path where the video, image, and summary were uploaded.
"""
logging.info(f"Upscaling video to 4K for upload: {input_video_path}")
# --- Upscale video ---
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
upscaled_path = tmp_upscaled.name
cmd = [
"ffmpeg",
"-i", input_video_path,
"-vf", "scale=3840:2160:flags=lanczos",
"-c:v", "libx264",
"-crf", "18",
"-preset", "slow",
"-y",
upscaled_path,
]
try:
subprocess.run(cmd, check=True, capture_output=True)
logging.info(f"✅ Upscaled video created at: {upscaled_path}")
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
raise
# --- Create HF folder ---
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"upload_{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}-WAN-I2V/{unique_subfolder}"
# --- Upload video ---
video_filename = os.path.basename(input_video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=upscaled_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")
# --- Upload input image ---
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
if isinstance(input_image, str):
import shutil
shutil.copy(input_image, tmp_img.name)
else:
input_image.save(tmp_img.name, format="PNG")
tmp_img_path = tmp_img.name
image_hf_path = f"{hf_folder}/input_image.png"
upload_file(
path_or_fileobj=tmp_img_path,
path_in_repo=image_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded input image to HF: {image_hf_path}")
# --- Upload summary text ---
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
# --- Cleanup temporary files ---
os.remove(upscaled_path)
os.remove(tmp_img_path)
os.remove(summary_file)
return hf_folder
LORA_REPO_ID = "rahul7star/wan2.2Lora"
LORA_SETS = {
"NF": {
"high_noise": {"file": "DR34ML4Y_I2V_14B_HIGH.safetensors", "adapter_name": "nf_high"},
"low_noise": {"file": "DR34ML4Y_I2V_14B_LOW.safetensors", "adapter_name": "nf_low"}
},
"BP": {
"high_noise": {"file": "Wan2.2_BP-v1-HighNoise-I2V_T2V.safetensors", "adapter_name": "bp_high"},
"low_noise": {"file": "Wan2.2_BP-v1-LowNoise-I2V_T2V.safetensors", "adapter_name": "bp_low"}
},
"Py-v1": {
"high_noise": {"file": "wan2.2_i2v_highnoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_high"},
"low_noise": {"file": "wan2.2_i2v_lownoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_low"}
}
}
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 576
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
torch_dtype=torch.bfloat16,
).to('cuda')
optimize_pipeline_(pipe,
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
for name, lora_set in LORA_SETS.items():
print(f"---LoRA 集合: {name} ---")
# 加载 High Noise
high_noise_config = lora_set["high_noise"]
print(f"High Noise: {high_noise_config['file']}...")
pipe.load_lora_weights(LORA_REPO_ID, weight_name=high_noise_config['file'], adapter_name=high_noise_config['adapter_name'])
print("High Noise LoRA 加载完成。")
# 加载 Low Noise
low_noise_config = lora_set["low_noise"]
print(f" Low Noise: {low_noise_config['file']}...")
pipe.load_lora_weights(LORA_REPO_ID, weight_name=low_noise_config['file'], adapter_name=low_noise_config['adapter_name'])
print("Low Noise LoRA ")
print("。")
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
def resize_image(image: Image.Image) -> Image.Image:
if image.height > image.width:
transposed = image.transpose(Image.Transpose.ROTATE_90)
resized = resize_image_landscape(transposed)
return resized.transpose(Image.Transpose.ROTATE_270)
return resize_image_landscape(image)
def resize_image_landscape(image: Image.Image) -> Image.Image:
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
width, height = image.size
in_aspect = width / height
if in_aspect > target_aspect:
new_width = round(height * target_aspect)
left = (width - new_width) // 2
image = image.crop((left, 0, left + new_width, height))
else:
new_height = round(width / target_aspect)
top = (height - new_height) // 2
image = image.crop((0, top, width, top + new_height))
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
def get_duration(
input_image,
prompt,
steps,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
seed,
randomize_seed,
selected_loras,
progress,
):
return int(steps) * 15
@spaces.GPU(duration=get_duration)
def generate_video(
input_image,
prompt,
steps = 4,
negative_prompt=default_negative_prompt,
duration_seconds = MAX_DURATION,
guidance_scale = 1,
guidance_scale_2 = 1,
seed = 42,
randomize_seed = False,
selected_loras = [],
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
raise gr.Error("Please upload an input image.")
print("potmpt is ")
print(prompt)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
num_inference_steps = int(steps)
switch_step = num_inference_steps // 2
class LoraSwitcher:
def __init__(self, selected_lora_names):
self.switched = False
self.high_noise_adapters = []
self.low_noise_adapters = []
if selected_lora_names:
for name in selected_lora_names:
if name in LORA_SETS:
self.high_noise_adapters.append(LORA_SETS[name]["high_noise"]["adapter_name"])
self.low_noise_adapters.append(LORA_SETS[name]["low_noise"]["adapter_name"])
def __call__(self, pipe, step_index, timestep, callback_kwargs):
# LoRA 状态
if step_index == 0:
self.switched = False
# LoRA,则激活 High Noise 版本
if self.high_noise_adapters:
print(f"激活 High Noise LoRA: {self.high_noise_adapters}")
pipe.set_adapters(self.high_noise_adapters, adapter_weights=[1.0] * len(self.high_noise_adapters))
# 🔥 同时 fuse_lora
try:
print(f"Fuse High Noise LoRA: {self.high_noise_adapters}")
pipe.fuse_lora()
except Exception as e:
print(f"Fuse High Noise LoRA 失败: {e}")
# LoRA,则通过将权重设为0来禁用任何可能残留的 LoRA
elif pipe.get_active_adapters():
active_adapters = pipe.get_active_adapters()
print(f"未选择 LoRA,通过设置权重为0来禁用残留的 LoRA: {active_adapters}")
pipe.set_adapters(active_adapters, adapter_weights=[0.0] * len(active_adapters))
#Low Noise LoRA(仅当有 LoRA 被选择时)
if self.low_noise_adapters and step_index >= switch_step and not self.switched:
print(f"在第 {step_index} 步切换到 Low Noise LoRA: {self.low_noise_adapters}")
pipe.set_adapters(self.low_noise_adapters, adapter_weights=[1.0] * len(self.low_noise_adapters))
try:
print(f"Fuse Low Noise LoRA: {self.low_noise_adapters}")
pipe.fuse_lora()
except Exception as e:
print(f"Fuse Low Noise LoRA 失败: {e}")
self.switched = True
return callback_kwargs
lora_switcher_callback = LoraSwitcher(selected_loras)
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=num_inference_steps,
generator=torch.Generator(device="cuda").manual_seed(current_seed),
callback_on_step_end=lora_switcher_callback,
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
#upscale_and_upload_4k(video_path, input_image, prompt)
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 I2V (14B) with Lightning LoRA")
gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Row(): # ensures columns align in height
with gr.Column():
input_image_component = gr.Image(
type="pil",
label="Input Image (auto-resized to target H/W)",
interactive=True,
elem_classes=["flex-image"]
)
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(
minimum=MIN_DURATION,
maximum=MAX_DURATION,
step=0.1,
value=3.5,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
lora_selection_checkbox = gr.CheckboxGroup(
choices=list(LORA_SETS.keys()),
label="选择要应用的 LoRA (可多选)",
info="选择一个或多个 LoRA 风格进行组合。"
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False, elem_classes=["stretch-video"])
ui_inputs = [
input_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox,
lora_selection_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
if __name__ == "__main__":
demo.queue().launch()
|