Spaces:
Paused
Paused
File size: 11,212 Bytes
21f1ab8 cf4ec53 21f1ab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"')
from huggingface_hub import HfApi, upload_file
import uuid
import subprocess
import tempfile
import logging
import shutil
from datetime import datetime
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
from huggingface_hub import hf_hub_download
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
LORA_REPO_ID = "rahul7star/wan2.2Lora"
LORA_SETS = {
"NF": {
"high_noise": {"file": "NSFW-22-H-e8.safetensors", "adapter_name": "nf_high"},
"low_noise": {"file": "NSFW-22-L-e8.safetensors", "adapter_name": "nf_low"}
},
"BP": {
"high_noise": {"file": "Wan2.2_BP-v1-HighNoise-I2V_T2V.safetensors", "adapter_name": "bp_high"},
"low_noise": {"file": "Wan2.2_BP-v1-LowNoise-I2V_T2V.safetensors", "adapter_name": "bp_low"}
},
"Py-v1": {
"high_noise": {"file": "wan2.2_i2v_highnoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_high"},
"low_noise": {"file": "wan2.2_i2v_lownoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_low"}
}
}
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 576
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
# ---------------- Pipeline -----------------
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained(
'cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained(
'cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
torch_dtype=torch.bfloat16,
).to('cuda')
# Optimize once for AoT
optimize_pipeline_(
pipe,
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
# ---------------- Load LoRA Weights -----------------
for name, lora_set in LORA_SETS.items():
print(f"--- LoRA 集合: {name} ---")
high_noise_config = lora_set["high_noise"]
print(f"High Noise: {high_noise_config['file']}...")
pipe.load_lora_weights(
LORA_REPO_ID,
weight_name=high_noise_config['file'],
adapter_name=high_noise_config['adapter_name']
)
print("High Noise LoRA 加载完成。")
low_noise_config = lora_set["low_noise"]
print(f"Low Noise: {low_noise_config['file']}...")
pipe.load_lora_weights(
LORA_REPO_ID,
weight_name=low_noise_config['file'],
adapter_name=low_noise_config['adapter_name']
)
print("Low Noise LoRA 加载完成。")
# Fuse once globally
try:
pipe.fuse_lora()
print("✅ 全局 Fuse LoRA 成功")
except Exception as e:
print(f"⚠️ Fuse LoRA 失败: {e}")
# Clean GPU
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
# ---------------- Defaults -----------------
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = (
"色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, "
"整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, "
"画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, "
"静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
)
# ---------------- Utils -----------------
def resize_image(image: Image.Image) -> Image.Image:
if image.height > image.width:
transposed = image.transpose(Image.Transpose.ROTATE_90)
resized = resize_image_landscape(transposed)
return resized.transpose(Image.Transpose.ROTATE_270)
return resize_image_landscape(image)
def resize_image_landscape(image: Image.Image) -> Image.Image:
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
width, height = image.size
in_aspect = width / height
if in_aspect > target_aspect:
new_width = round(height * target_aspect)
left = (width - new_width) // 2
image = image.crop((left, 0, left + new_width, height))
else:
new_height = round(width / target_aspect)
top = (height - new_height) // 2
image = image.crop((0, top, width, top + new_height))
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
def get_duration(
input_image,
prompt,
steps,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
seed,
randomize_seed,
selected_loras,
progress,
):
return int(steps) * 15
# ---------------- LoRA Switcher -----------------
class LoraSwitcher:
def __init__(self, selected_lora_names, switch_step):
self.switched = False
self.high_noise_adapters = []
self.low_noise_adapters = []
self.switch_step = switch_step
if selected_lora_names:
for name in selected_lora_names:
if name in LORA_SETS:
self.high_noise_adapters.append(LORA_SETS[name]["high_noise"]["adapter_name"])
self.low_noise_adapters.append(LORA_SETS[name]["low_noise"]["adapter_name"])
def __call__(self, pipe, step_index, timestep, callback_kwargs):
if step_index == 0:
self.switched = False
if self.high_noise_adapters:
print(f"激活 High Noise LoRA: {self.high_noise_adapters}")
pipe.set_adapters(self.high_noise_adapters, adapter_weights=[1.0]*len(self.high_noise_adapters))
try:
pipe.fuse_lora()
print("Fuse High Noise LoRA ✅")
except Exception as e:
print(f"Fuse High Noise LoRA 失败: {e}")
elif pipe.get_active_adapters():
active = pipe.get_active_adapters()
print(f"禁用残留的 LoRA: {active}")
pipe.set_adapters(active, adapter_weights=[0.0]*len(active))
if self.low_noise_adapters and step_index >= self.switch_step and not self.switched:
print(f"在第 {step_index} 步切换到 Low Noise LoRA: {self.low_noise_adapters}")
pipe.set_adapters(self.low_noise_adapters, adapter_weights=[1.0]*len(self.low_noise_adapters))
try:
pipe.fuse_lora()
print("Fuse Low Noise LoRA ✅")
except Exception as e:
print(f"Fuse Low Noise LoRA 失败: {e}")
self.switched = True
return callback_kwargs
# ---------------- Main Generation -----------------
@spaces.GPU(duration=get_duration)
def generate_video(
input_image,
prompt,
steps=4,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
selected_loras=[],
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
raise gr.Error("Please upload an input image.")
print("Prompt is:", prompt)
# Reset fused LoRA before new run
try:
pipe.unfuse_lora()
print("🔄 Reset unfuse_lora before generation")
except Exception:
pass
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
num_inference_steps = int(steps)
switch_step = num_inference_steps // 2
lora_switcher_callback = LoraSwitcher(selected_loras, switch_step)
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=num_inference_steps,
generator=torch.Generator(device="cuda").manual_seed(current_seed),
callback_on_step_end=lora_switcher_callback,
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
# ---------------- UI -----------------
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 I2V (14B) with Lightning LoRA")
gr.Markdown("Run Wan 2.2 in just 4-8 steps, with Lightning LoRA, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image (auto-resized)", interactive=True)
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)")
lora_selection_checkbox = gr.CheckboxGroup(choices=list(LORA_SETS.keys()), label="选择要应用的 LoRA (可多选)")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True)
ui_inputs = [
input_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, seed_input,
randomize_seed_checkbox, lora_selection_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
if __name__ == "__main__":
demo.queue().launch()
|