File size: 11,212 Bytes
21f1ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4ec53
 
21f1ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"')
from huggingface_hub import HfApi, upload_file
import uuid
import subprocess
import tempfile
import logging
import shutil
from datetime import datetime

import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
from huggingface_hub import hf_hub_download


MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"

LORA_REPO_ID = "rahul7star/wan2.2Lora"
LORA_SETS = {
    "NF": {
        "high_noise": {"file": "NSFW-22-H-e8.safetensors", "adapter_name": "nf_high"},
        "low_noise": {"file": "NSFW-22-L-e8.safetensors", "adapter_name": "nf_low"}
    },
    "BP": {
        "high_noise": {"file": "Wan2.2_BP-v1-HighNoise-I2V_T2V.safetensors", "adapter_name": "bp_high"},
        "low_noise": {"file": "Wan2.2_BP-v1-LowNoise-I2V_T2V.safetensors", "adapter_name": "bp_low"}
    },
    "Py-v1": {
        "high_noise": {"file": "wan2.2_i2v_highnoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_high"},
        "low_noise": {"file": "wan2.2_i2v_lownoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_low"}
    }
}

LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 576
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81

MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)


# ---------------- Pipeline -----------------
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID,
    transformer=WanTransformer3DModel.from_pretrained(
        'cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    transformer_2=WanTransformer3DModel.from_pretrained(
        'cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer_2',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    torch_dtype=torch.bfloat16,
).to('cuda')

# Optimize once for AoT
optimize_pipeline_(
    pipe,
    image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
    prompt='prompt',
    height=LANDSCAPE_HEIGHT,
    width=LANDSCAPE_WIDTH,
    num_frames=MAX_FRAMES_MODEL,
)

# ---------------- Load LoRA Weights -----------------
for name, lora_set in LORA_SETS.items():
    print(f"--- LoRA 集合: {name} ---")

    high_noise_config = lora_set["high_noise"]
    print(f"High Noise: {high_noise_config['file']}...")
    pipe.load_lora_weights(
        LORA_REPO_ID,
        weight_name=high_noise_config['file'],
        adapter_name=high_noise_config['adapter_name']
    )
    print("High Noise LoRA 加载完成。")

    low_noise_config = lora_set["low_noise"]
    print(f"Low Noise: {low_noise_config['file']}...")
    pipe.load_lora_weights(
        LORA_REPO_ID,
        weight_name=low_noise_config['file'],
        adapter_name=low_noise_config['adapter_name']
    )
    print("Low Noise LoRA 加载完成。")

# Fuse once globally
try:
    pipe.fuse_lora()
    print("✅ 全局 Fuse LoRA 成功")
except Exception as e:
    print(f"⚠️ Fuse LoRA 失败: {e}")

# Clean GPU
for i in range(3):
    gc.collect()
    torch.cuda.synchronize()
    torch.cuda.empty_cache()

# ---------------- Defaults -----------------
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = (
    "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, "
    "整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, "
    "画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, "
    "静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
)


# ---------------- Utils -----------------
def resize_image(image: Image.Image) -> Image.Image:
    if image.height > image.width:
        transposed = image.transpose(Image.Transpose.ROTATE_90)
        resized = resize_image_landscape(transposed)
        return resized.transpose(Image.Transpose.ROTATE_270)
    return resize_image_landscape(image)


def resize_image_landscape(image: Image.Image) -> Image.Image:
    target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
    width, height = image.size
    in_aspect = width / height
    if in_aspect > target_aspect:
        new_width = round(height * target_aspect)
        left = (width - new_width) // 2
        image = image.crop((left, 0, left + new_width, height))
    else:
        new_height = round(width / target_aspect)
        top = (height - new_height) // 2
        image = image.crop((0, top, width, top + new_height))
    return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)


def get_duration(
    input_image,
    prompt,
    steps,
    negative_prompt,
    duration_seconds,
    guidance_scale,
    guidance_scale_2,
    seed,
    randomize_seed,
    selected_loras,
    progress,
):
    return int(steps) * 15


# ---------------- LoRA Switcher -----------------
class LoraSwitcher:
    def __init__(self, selected_lora_names, switch_step):
        self.switched = False
        self.high_noise_adapters = []
        self.low_noise_adapters = []
        self.switch_step = switch_step

        if selected_lora_names:
            for name in selected_lora_names:
                if name in LORA_SETS:
                    self.high_noise_adapters.append(LORA_SETS[name]["high_noise"]["adapter_name"])
                    self.low_noise_adapters.append(LORA_SETS[name]["low_noise"]["adapter_name"])

    def __call__(self, pipe, step_index, timestep, callback_kwargs):
        if step_index == 0:
            self.switched = False
            if self.high_noise_adapters:
                print(f"激活 High Noise LoRA: {self.high_noise_adapters}")
                pipe.set_adapters(self.high_noise_adapters, adapter_weights=[1.0]*len(self.high_noise_adapters))
                try:
                    pipe.fuse_lora()
                    print("Fuse High Noise LoRA ✅")
                except Exception as e:
                    print(f"Fuse High Noise LoRA 失败: {e}")
            elif pipe.get_active_adapters():
                active = pipe.get_active_adapters()
                print(f"禁用残留的 LoRA: {active}")
                pipe.set_adapters(active, adapter_weights=[0.0]*len(active))

        if self.low_noise_adapters and step_index >= self.switch_step and not self.switched:
            print(f"在第 {step_index} 步切换到 Low Noise LoRA: {self.low_noise_adapters}")
            pipe.set_adapters(self.low_noise_adapters, adapter_weights=[1.0]*len(self.low_noise_adapters))
            try:
                pipe.fuse_lora()
                print("Fuse Low Noise LoRA ✅")
            except Exception as e:
                print(f"Fuse Low Noise LoRA 失败: {e}")
            self.switched = True

        return callback_kwargs


# ---------------- Main Generation -----------------
@spaces.GPU(duration=get_duration)
def generate_video(
    input_image,
    prompt,
    steps=4,
    negative_prompt=default_negative_prompt,
    duration_seconds=MAX_DURATION,
    guidance_scale=1,
    guidance_scale_2=1,
    seed=42,
    randomize_seed=False,
    selected_loras=[],
    progress=gr.Progress(track_tqdm=True),
):
    if input_image is None:
        raise gr.Error("Please upload an input image.")
    print("Prompt is:", prompt)

    # Reset fused LoRA before new run
    try:
        pipe.unfuse_lora()
        print("🔄 Reset unfuse_lora before generation")
    except Exception:
        pass

    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = resize_image(input_image)

    num_inference_steps = int(steps)
    switch_step = num_inference_steps // 2

    lora_switcher_callback = LoraSwitcher(selected_loras, switch_step)

    output_frames_list = pipe(
        image=resized_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=resized_image.height,
        width=resized_image.width,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=num_inference_steps,
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
        callback_on_step_end=lora_switcher_callback,
    ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    return video_path, current_seed


# ---------------- UI -----------------
with gr.Blocks() as demo:
    gr.Markdown("# Fast 4 steps Wan 2.2 I2V (14B) with Lightning LoRA")
    gr.Markdown("Run Wan 2.2 in just 4-8 steps, with Lightning LoRA, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")

    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image (auto-resized)", interactive=True)
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)")
            lora_selection_checkbox = gr.CheckboxGroup(choices=list(LORA_SETS.keys()), label="选择要应用的 LoRA (可多选)")

            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise")
                guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise")

            generate_button = gr.Button("Generate Video", variant="primary")

        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True)

    ui_inputs = [
        input_image_component, prompt_input, steps_slider,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, guidance_scale_2_input, seed_input,
        randomize_seed_checkbox, lora_selection_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

if __name__ == "__main__":
    demo.queue().launch()