Spaces:
Running
Running
File size: 9,442 Bytes
fcc02a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
from dataclasses import dataclass
import torch
from torch import Tensor, nn
import torch.utils.checkpoint as ckpt
from .layers import (
DoubleStreamBlock,
EmbedND,
LastLayer,
SingleStreamBlock,
timestep_embedding,
Approximator,
distribute_modulations,
)
@dataclass
class ChromaParams:
in_channels: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
approximator_in_dim: int
approximator_depth: int
approximator_hidden_size: int
_use_compiled: bool
chroma_params = ChromaParams(
in_channels=64,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
approximator_in_dim=64,
approximator_depth=5,
approximator_hidden_size=5120,
_use_compiled=False,
)
def modify_mask_to_attend_padding(mask, max_seq_length, num_extra_padding=8):
"""
Modifies attention mask to allow attention to a few extra padding tokens.
Args:
mask: Original attention mask (1 for tokens to attend to, 0 for masked tokens)
max_seq_length: Maximum sequence length of the model
num_extra_padding: Number of padding tokens to unmask
Returns:
Modified mask
"""
# Get the actual sequence length from the mask
seq_length = mask.sum(dim=-1)
batch_size = mask.shape[0]
modified_mask = mask.clone()
for i in range(batch_size):
current_seq_len = int(seq_length[i].item())
# Only add extra padding tokens if there's room
if current_seq_len < max_seq_length:
# Calculate how many padding tokens we can unmask
available_padding = max_seq_length - current_seq_len
tokens_to_unmask = min(num_extra_padding, available_padding)
# Unmask the specified number of padding tokens right after the sequence
modified_mask[i, current_seq_len : current_seq_len + tokens_to_unmask] = 1
return modified_mask
class Chroma(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: ChromaParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(
f"Got {params.axes_dim} but expected positional dim {pe_dim}"
)
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(
dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim
)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
# TODO: need proper mapping for this approximator output!
# currently the mapping is hardcoded in distribute_modulations function
self.distilled_guidance_layer = Approximator(
params.approximator_in_dim,
self.hidden_size,
params.approximator_hidden_size,
params.approximator_depth,
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
use_compiled=params._use_compiled,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
use_compiled=params._use_compiled,
)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(
self.hidden_size,
1,
self.out_channels,
use_compiled=params._use_compiled,
)
# TODO: move this hardcoded value to config
self.mod_index_length = 344
# self.mod_index = torch.tensor(list(range(self.mod_index_length)), device=0)
self.register_buffer(
"mod_index",
torch.tensor(list(range(self.mod_index_length)), device="cpu"),
persistent=False,
)
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
txt_mask: Tensor,
timesteps: Tensor,
guidance: Tensor,
attn_padding: int = 1,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
txt = self.txt_in(txt)
# TODO:
# need to fix grad accumulation issue here for now it's in no grad mode
# besides, i don't want to wash out the PFP that's trained on this model weights anyway
# the fan out operation here is deleting the backward graph
# alternatively doing forward pass for every block manually is doable but slow
# custom backward probably be better
with torch.no_grad():
distill_timestep = timestep_embedding(timesteps, 16)
# TODO: need to add toggle to omit this from schnell but that's not a priority
distil_guidance = timestep_embedding(guidance, 16)
# get all modulation index
modulation_index = timestep_embedding(self.mod_index, 32)
# we need to broadcast the modulation index here so each batch has all of the index
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1)
# and we need to broadcast timestep and guidance along too
timestep_guidance = (
torch.cat([distill_timestep, distil_guidance], dim=1)
.unsqueeze(1)
.repeat(1, self.mod_index_length, 1)
)
# then and only then we could concatenate it together
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1)
mod_vectors = self.distilled_guidance_layer(input_vec.requires_grad_(True))
mod_vectors_dict = distribute_modulations(mod_vectors)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
# compute mask
# assume max seq length from the batched input
max_len = txt.shape[1]
# mask
with torch.no_grad():
txt_mask_w_padding = modify_mask_to_attend_padding(
txt_mask, max_len, attn_padding
)
txt_img_mask = torch.cat(
[
txt_mask_w_padding,
torch.ones([img.shape[0], img.shape[1]], device=txt_mask.device),
],
dim=1,
)
txt_img_mask = txt_img_mask.float().T @ txt_img_mask.float()
txt_img_mask = (
txt_img_mask[None, None, ...]
.repeat(txt.shape[0], self.num_heads, 1, 1)
.int()
.bool()
)
# txt_mask_w_padding[txt_mask_w_padding==False] = True
for i, block in enumerate(self.double_blocks):
# the guidance replaced by FFN output
img_mod = mod_vectors_dict[f"double_blocks.{i}.img_mod.lin"]
txt_mod = mod_vectors_dict[f"double_blocks.{i}.txt_mod.lin"]
double_mod = [img_mod, txt_mod]
# just in case in different GPU for simple pipeline parallel
if self.training:
img.requires_grad_(True)
img, txt = ckpt.checkpoint(
block, img, txt, pe, double_mod, txt_img_mask
)
else:
img, txt = block(
img=img, txt=txt, pe=pe, distill_vec=double_mod, mask=txt_img_mask
)
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
single_mod = mod_vectors_dict[f"single_blocks.{i}.modulation.lin"]
if self.training:
img.requires_grad_(True)
img = ckpt.checkpoint(block, img, pe, single_mod, txt_img_mask)
else:
img = block(img, pe=pe, distill_vec=single_mod, mask=txt_img_mask)
img = img[:, txt.shape[1] :, ...]
final_mod = mod_vectors_dict["final_layer.adaLN_modulation.1"]
img = self.final_layer(
img, distill_vec=final_mod
) # (N, T, patch_size ** 2 * out_channels)
return img
|