File size: 3,957 Bytes
fcc02a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
job: extension
config:
  name: example_name
  process:
    - type: 'image_reference_slider_trainer'
      training_folder: "/mnt/Train/out/LoRA"
      device: cuda:0
      # for tensorboard logging
      log_dir: "/home/jaret/Dev/.tensorboard"
      network:
        type: "lora"
        linear: 8
        linear_alpha: 8
      train:
        noise_scheduler: "ddpm" # or "ddpm", "lms", "euler_a"
        steps: 5000
        lr: 1e-4
        train_unet: true
        gradient_checkpointing: true
        train_text_encoder: true
        optimizer: "adamw"
        optimizer_params:
          weight_decay: 1e-2
        lr_scheduler: "constant"
        max_denoising_steps: 1000
        batch_size: 1
        dtype: bf16
        xformers: true
        skip_first_sample: true
        noise_offset: 0.0
      model:
        name_or_path: "/path/to/model.safetensors"
        is_v2: false  # for v2 models
        is_xl: false  # for SDXL models
        is_v_pred: false # for v-prediction models (most v2 models)
      save:
        dtype: float16 # precision to save
        save_every: 1000 # save every this many steps
        max_step_saves_to_keep: 2 # only affects step counts
      sample:
        sampler: "ddpm" # must match train.noise_scheduler
        sample_every: 100 # sample every this many steps
        width: 512
        height: 512
        prompts:
          - "photo of a woman with red hair taking a selfie --m -3"
          - "photo of a woman with red hair taking a selfie --m -1"
          - "photo of a woman with red hair taking a selfie --m 1"
          - "photo of a woman with red hair taking a selfie --m 3"
          - "close up photo of a man smiling at the camera, in a tank top --m -3"
          - "close up photo of a man smiling at the camera, in a tank top--m -1"
          - "close up photo of a man smiling at the camera, in a tank top --m 1"
          - "close up photo of a man smiling at the camera, in a tank top --m 3"
          - "photo of a blonde woman smiling, barista --m -3"
          - "photo of a blonde woman smiling, barista --m -1"
          - "photo of a blonde woman smiling, barista --m 1"
          - "photo of a blonde woman smiling, barista --m 3"
          - "photo of a Christina Hendricks --m -1"
          - "photo of a Christina Hendricks --m -1"
          - "photo of a Christina Hendricks --m 1"
          - "photo of a Christina Hendricks --m 3"
          - "photo of a Christina Ricci --m -3"
          - "photo of a Christina Ricci --m -1"
          - "photo of a Christina Ricci --m 1"
          - "photo of a Christina Ricci --m 3"
        neg: "cartoon, fake, drawing, illustration, cgi, animated, anime"
        seed: 42
        walk_seed: false
        guidance_scale: 7
        sample_steps: 20
        network_multiplier: 1.0

      logging:
        log_every: 10 # log every this many steps
        use_wandb: false # not supported yet
        verbose: false

      slider:
        datasets:
          - pair_folder: "/path/to/folder/side/by/side/images"
            network_weight: 2.0
            target_class: "" # only used as default if caption txt are not present
            size: 512
          - pair_folder: "/path/to/folder/side/by/side/images"
            network_weight: 4.0
            target_class: "" # only used as default if caption txt are not present
            size: 512


# you can put any information you want here, and it will be saved in the model
# the below is an example. I recommend doing trigger words at a minimum
# in the metadata. The software will include this plus some other information
meta:
  name: "[name]"  # [name] gets replaced with the name above
  description: A short description of your model
  trigger_words:
  - put
  - trigger
  - words
  - here
  version: '0.1'
  creator:
    name: Your Name
    email: your@email.com
    website: https://yourwebsite.com
  any: All meta data above is arbitrary, it can be whatever you want.