File size: 6,573 Bytes
fcc02a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import { NextRequest, NextResponse } from 'next/server';
import { PrismaClient } from '@prisma/client';
import { TOOLKIT_ROOT } from '@/paths';
import { spawn } from 'child_process';
import path from 'path';
import fs from 'fs';
import os from 'os';
import { getTrainingFolder, getHFToken } from '@/server/settings';
const isWindows = process.platform === 'win32';

const prisma = new PrismaClient();

export async function GET(request: NextRequest, { params }: { params: { jobID: string } }) {
  const { jobID } = await params;

  const job = await prisma.job.findUnique({
    where: { id: jobID },
  });

  if (!job) {
    return NextResponse.json({ error: 'Job not found' }, { status: 404 });
  }

  // update job status to 'running'
  await prisma.job.update({
    where: { id: jobID },
    data: {
      status: 'running',
      stop: false,
      info: 'Starting job...',
    },
  });

  // setup the training
  const trainingRoot = await getTrainingFolder();

  const trainingFolder = path.join(trainingRoot, job.name);
  if (!fs.existsSync(trainingFolder)) {
    fs.mkdirSync(trainingFolder, { recursive: true });
  }

  // make the config file
  const configPath = path.join(trainingFolder, '.job_config.json');

  //log to path
  const logPath = path.join(trainingFolder, 'log.txt');

  try {
    // if the log path exists, move it to a folder called logs and rename it {num}_log.txt, looking for the highest num
    // if the log path does not exist, create it
    if (fs.existsSync(logPath)) {
      const logsFolder = path.join(trainingFolder, 'logs');
      if (!fs.existsSync(logsFolder)) {
        fs.mkdirSync(logsFolder, { recursive: true });
      }

      let num = 0;
      while (fs.existsSync(path.join(logsFolder, `${num}_log.txt`))) {
        num++;
      }

      fs.renameSync(logPath, path.join(logsFolder, `${num}_log.txt`));
    }
  } catch (e) {
    console.error('Error moving log file:', e);
  }

  // update the config dataset path
  const jobConfig = JSON.parse(job.job_config);
  jobConfig.config.process[0].sqlite_db_path = path.join(TOOLKIT_ROOT, 'aitk_db.db');

  // write the config file
  fs.writeFileSync(configPath, JSON.stringify(jobConfig, null, 2));

  let pythonPath = 'python';
  // use .venv or venv if it exists
  if (fs.existsSync(path.join(TOOLKIT_ROOT, '.venv'))) {
    if (isWindows) {
      pythonPath = path.join(TOOLKIT_ROOT, '.venv', 'Scripts', 'python.exe');
    } else {
      pythonPath = path.join(TOOLKIT_ROOT, '.venv', 'bin', 'python');
    }
  } else if (fs.existsSync(path.join(TOOLKIT_ROOT, 'venv'))) {
    if (isWindows) {
      pythonPath = path.join(TOOLKIT_ROOT, 'venv', 'Scripts', 'python.exe');
    } else {
      pythonPath = path.join(TOOLKIT_ROOT, 'venv', 'bin', 'python');
    }
  }

  const runFilePath = path.join(TOOLKIT_ROOT, 'run.py');
  if (!fs.existsSync(runFilePath)) {
    return NextResponse.json({ error: 'run.py not found' }, { status: 500 });
  }

  const additionalEnv: any = {
    AITK_JOB_ID: jobID,
    CUDA_VISIBLE_DEVICES: `${job.gpu_ids}`,
    IS_AI_TOOLKIT_UI: '1'
  };

  // HF_TOKEN
  const hfToken = await getHFToken();
  if (hfToken && hfToken.trim() !== '') {
    additionalEnv.HF_TOKEN = hfToken;
  }

  // Add the --log argument to the command
  const args = [runFilePath, configPath, '--log', logPath];

  try {
    let subprocess;

    if (isWindows) {
      // For Windows, use 'cmd.exe' to open a new command window
      subprocess = spawn('cmd.exe', ['/c', 'start', 'cmd.exe', '/k', pythonPath, ...args], {
        env: {
          ...process.env,
          ...additionalEnv,
        },
        cwd: TOOLKIT_ROOT,
        windowsHide: false,
      });
    } else {
      // For non-Windows platforms
      subprocess = spawn(pythonPath, args, {
        detached: true,
        stdio: ['ignore', 'pipe', 'pipe'], // Changed from 'ignore' to capture output
        env: {
          ...process.env,
          ...additionalEnv,
        },
        cwd: TOOLKIT_ROOT,
      });
    }

    // Start monitoring in the background without blocking the response
    const monitorProcess = async () => {
      const startTime = Date.now();
      let errorOutput = '';
      let stdoutput = '';

      if (subprocess.stderr) {
        subprocess.stderr.on('data', data => {
          errorOutput += data.toString();
        });
        subprocess.stdout.on('data', data => {
          stdoutput += data.toString();
          // truncate to only get the last 500 characters
          if (stdoutput.length > 500) {
            stdoutput = stdoutput.substring(stdoutput.length - 500);
          }
        });
      }

      subprocess.on('exit', async code => {
        const currentTime = Date.now();
        const duration = (currentTime - startTime) / 1000;
        console.log(`Job ${jobID} exited with code ${code} after ${duration} seconds.`);
        // wait for 5 seconds to give it time to stop itself. It id still has a status of running in the db, update it to stopped
        await new Promise(resolve => setTimeout(resolve, 5000));
        const updatedJob = await prisma.job.findUnique({
          where: { id: jobID },
        });
        if (updatedJob?.status === 'running') {
          let errorString = errorOutput;
          if (errorString.trim() === '') {
            errorString = stdoutput;
          }
          await prisma.job.update({
            where: { id: jobID },
            data: {
              status: 'error',
              info: `Error launching job: ${errorString.substring(0, 500)}`,
            },
          });
        }
      });

      // Wait 30 seconds before releasing the process
      await new Promise(resolve => setTimeout(resolve, 30000));
      // Detach the process for non-Windows systems
      if (!isWindows && subprocess.unref) {
        subprocess.unref();
      }
    };

    // Start the monitoring without awaiting it
    monitorProcess().catch(err => {
      console.error(`Error in process monitoring for job ${jobID}:`, err);
    });

    // Return the response immediately
    return NextResponse.json(job);
  } catch (error: any) {
    // Handle any exceptions during process launch
    console.error('Error launching process:', error);

    await prisma.job.update({
      where: { id: jobID },
      data: {
        status: 'error',
        info: `Error launching job: ${error?.message || 'Unknown error'}`,
      },
    });

    return NextResponse.json(
      {
        error: 'Failed to launch job process',
        details: error?.message || 'Unknown error',
      },
      { status: 500 },
    );
  }
}