Spaces:
Running
Running
import math | |
from dataclasses import dataclass | |
import torch | |
from einops import rearrange | |
from torch import Tensor, nn | |
import torch.nn.functional as F | |
from .math import attention, rope | |
class EmbedND(nn.Module): | |
def __init__(self, dim: int, theta: int, axes_dim: list[int]): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: Tensor) -> Tensor: | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(1) | |
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
t = time_factor * t | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
if torch.is_floating_point(t): | |
embedding = embedding.to(t) | |
return embedding | |
class MLPEmbedder(nn.Module): | |
def __init__(self, in_dim: int, hidden_dim: int): | |
super().__init__() | |
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | |
self.silu = nn.SiLU() | |
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | |
def device(self): | |
# Get the device of the module (assumes all parameters are on the same device) | |
return next(self.parameters()).device | |
def forward(self, x: Tensor) -> Tensor: | |
return self.out_layer(self.silu(self.in_layer(x))) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, use_compiled: bool = False): | |
super().__init__() | |
self.scale = nn.Parameter(torch.ones(dim)) | |
self.use_compiled = use_compiled | |
def _forward(self, x: Tensor): | |
x_dtype = x.dtype | |
x = x.float() | |
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) | |
return (x * rrms).to(dtype=x_dtype) * self.scale | |
def forward(self, x: Tensor): | |
return F.rms_norm(x, self.scale.shape, weight=self.scale, eps=1e-6) | |
# if self.use_compiled: | |
# return torch.compile(self._forward)(x) | |
# else: | |
# return self._forward(x) | |
def distribute_modulations(tensor: torch.Tensor): | |
""" | |
Distributes slices of the tensor into the block_dict as ModulationOut objects. | |
Args: | |
tensor (torch.Tensor): Input tensor with shape [batch_size, vectors, dim]. | |
""" | |
batch_size, vectors, dim = tensor.shape | |
block_dict = {} | |
# HARD CODED VALUES! lookup table for the generated vectors | |
# TODO: move this into chroma config! | |
# Add 38 single mod blocks | |
for i in range(38): | |
key = f"single_blocks.{i}.modulation.lin" | |
block_dict[key] = None | |
# Add 19 image double blocks | |
for i in range(19): | |
key = f"double_blocks.{i}.img_mod.lin" | |
block_dict[key] = None | |
# Add 19 text double blocks | |
for i in range(19): | |
key = f"double_blocks.{i}.txt_mod.lin" | |
block_dict[key] = None | |
# Add the final layer | |
block_dict["final_layer.adaLN_modulation.1"] = None | |
# 6.2b version | |
block_dict["lite_double_blocks.4.img_mod.lin"] = None | |
block_dict["lite_double_blocks.4.txt_mod.lin"] = None | |
idx = 0 # Index to keep track of the vector slices | |
for key in block_dict.keys(): | |
if "single_blocks" in key: | |
# Single block: 1 ModulationOut | |
block_dict[key] = ModulationOut( | |
shift=tensor[:, idx : idx + 1, :], | |
scale=tensor[:, idx + 1 : idx + 2, :], | |
gate=tensor[:, idx + 2 : idx + 3, :], | |
) | |
idx += 3 # Advance by 3 vectors | |
elif "img_mod" in key: | |
# Double block: List of 2 ModulationOut | |
double_block = [] | |
for _ in range(2): # Create 2 ModulationOut objects | |
double_block.append( | |
ModulationOut( | |
shift=tensor[:, idx : idx + 1, :], | |
scale=tensor[:, idx + 1 : idx + 2, :], | |
gate=tensor[:, idx + 2 : idx + 3, :], | |
) | |
) | |
idx += 3 # Advance by 3 vectors per ModulationOut | |
block_dict[key] = double_block | |
elif "txt_mod" in key: | |
# Double block: List of 2 ModulationOut | |
double_block = [] | |
for _ in range(2): # Create 2 ModulationOut objects | |
double_block.append( | |
ModulationOut( | |
shift=tensor[:, idx : idx + 1, :], | |
scale=tensor[:, idx + 1 : idx + 2, :], | |
gate=tensor[:, idx + 2 : idx + 3, :], | |
) | |
) | |
idx += 3 # Advance by 3 vectors per ModulationOut | |
block_dict[key] = double_block | |
elif "final_layer" in key: | |
# Final layer: 1 ModulationOut | |
block_dict[key] = [ | |
tensor[:, idx : idx + 1, :], | |
tensor[:, idx + 1 : idx + 2, :], | |
] | |
idx += 2 # Advance by 3 vectors | |
return block_dict | |
class Approximator(nn.Module): | |
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers=4): | |
super().__init__() | |
self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True) | |
self.layers = nn.ModuleList( | |
[MLPEmbedder(hidden_dim, hidden_dim) for x in range(n_layers)] | |
) | |
self.norms = nn.ModuleList([RMSNorm(hidden_dim) for x in range(n_layers)]) | |
self.out_proj = nn.Linear(hidden_dim, out_dim) | |
def device(self): | |
# Get the device of the module (assumes all parameters are on the same device) | |
return next(self.parameters()).device | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.in_proj(x) | |
for layer, norms in zip(self.layers, self.norms): | |
x = x + layer(norms(x)) | |
x = self.out_proj(x) | |
return x | |
class QKNorm(torch.nn.Module): | |
def __init__(self, dim: int, use_compiled: bool = False): | |
super().__init__() | |
self.query_norm = RMSNorm(dim, use_compiled=use_compiled) | |
self.key_norm = RMSNorm(dim, use_compiled=use_compiled) | |
self.use_compiled = use_compiled | |
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: | |
q = self.query_norm(q) | |
k = self.key_norm(k) | |
return q.to(v), k.to(v) | |
class SelfAttention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
use_compiled: bool = False, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.norm = QKNorm(head_dim, use_compiled=use_compiled) | |
self.proj = nn.Linear(dim, dim) | |
self.use_compiled = use_compiled | |
def forward(self, x: Tensor, pe: Tensor) -> Tensor: | |
qkv = self.qkv(x) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
q, k = self.norm(q, k, v) | |
x = attention(q, k, v, pe=pe) | |
x = self.proj(x) | |
return x | |
class ModulationOut: | |
shift: Tensor | |
scale: Tensor | |
gate: Tensor | |
def _modulation_shift_scale_fn(x, scale, shift): | |
return (1 + scale) * x + shift | |
def _modulation_gate_fn(x, gate, gate_params): | |
return x + gate * gate_params | |
class DoubleStreamBlock(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float, | |
qkv_bias: bool = False, | |
use_compiled: bool = False, | |
): | |
super().__init__() | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_attn = SelfAttention( | |
dim=hidden_size, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
use_compiled=use_compiled, | |
) | |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_attn = SelfAttention( | |
dim=hidden_size, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
use_compiled=use_compiled, | |
) | |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.use_compiled = use_compiled | |
def device(self): | |
# Get the device of the module (assumes all parameters are on the same device) | |
return next(self.parameters()).device | |
def modulation_shift_scale_fn(self, x, scale, shift): | |
if self.use_compiled: | |
return torch.compile(_modulation_shift_scale_fn)(x, scale, shift) | |
else: | |
return _modulation_shift_scale_fn(x, scale, shift) | |
def modulation_gate_fn(self, x, gate, gate_params): | |
if self.use_compiled: | |
return torch.compile(_modulation_gate_fn)(x, gate, gate_params) | |
else: | |
return _modulation_gate_fn(x, gate, gate_params) | |
def forward( | |
self, | |
img: Tensor, | |
txt: Tensor, | |
pe: Tensor, | |
distill_vec: list[ModulationOut], | |
mask: Tensor, | |
) -> tuple[Tensor, Tensor]: | |
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = distill_vec | |
# prepare image for attention | |
img_modulated = self.img_norm1(img) | |
# replaced with compiled fn | |
# img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift | |
img_modulated = self.modulation_shift_scale_fn( | |
img_modulated, img_mod1.scale, img_mod1.shift | |
) | |
img_qkv = self.img_attn.qkv(img_modulated) | |
img_q, img_k, img_v = rearrange( | |
img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads | |
) | |
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | |
# prepare txt for attention | |
txt_modulated = self.txt_norm1(txt) | |
# replaced with compiled fn | |
# txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift | |
txt_modulated = self.modulation_shift_scale_fn( | |
txt_modulated, txt_mod1.scale, txt_mod1.shift | |
) | |
txt_qkv = self.txt_attn.qkv(txt_modulated) | |
txt_q, txt_k, txt_v = rearrange( | |
txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads | |
) | |
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | |
# run actual attention | |
q = torch.cat((txt_q, img_q), dim=2) | |
k = torch.cat((txt_k, img_k), dim=2) | |
v = torch.cat((txt_v, img_v), dim=2) | |
attn = attention(q, k, v, pe=pe, mask=mask) | |
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] | |
# calculate the img bloks | |
# replaced with compiled fn | |
# img = img + img_mod1.gate * self.img_attn.proj(img_attn) | |
# img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) | |
img = self.modulation_gate_fn(img, img_mod1.gate, self.img_attn.proj(img_attn)) | |
img = self.modulation_gate_fn( | |
img, | |
img_mod2.gate, | |
self.img_mlp( | |
self.modulation_shift_scale_fn( | |
self.img_norm2(img), img_mod2.scale, img_mod2.shift | |
) | |
), | |
) | |
# calculate the txt bloks | |
# replaced with compiled fn | |
# txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) | |
# txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) | |
txt = self.modulation_gate_fn(txt, txt_mod1.gate, self.txt_attn.proj(txt_attn)) | |
txt = self.modulation_gate_fn( | |
txt, | |
txt_mod2.gate, | |
self.txt_mlp( | |
self.modulation_shift_scale_fn( | |
self.txt_norm2(txt), txt_mod2.scale, txt_mod2.shift | |
) | |
), | |
) | |
return img, txt | |
class SingleStreamBlock(nn.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qk_scale: float | None = None, | |
use_compiled: bool = False, | |
): | |
super().__init__() | |
self.hidden_dim = hidden_size | |
self.num_heads = num_heads | |
head_dim = hidden_size // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
# qkv and mlp_in | |
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | |
# proj and mlp_out | |
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | |
self.norm = QKNorm(head_dim, use_compiled=use_compiled) | |
self.hidden_size = hidden_size | |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.mlp_act = nn.GELU(approximate="tanh") | |
self.use_compiled = use_compiled | |
def device(self): | |
# Get the device of the module (assumes all parameters are on the same device) | |
return next(self.parameters()).device | |
def modulation_shift_scale_fn(self, x, scale, shift): | |
if self.use_compiled: | |
return torch.compile(_modulation_shift_scale_fn)(x, scale, shift) | |
else: | |
return _modulation_shift_scale_fn(x, scale, shift) | |
def modulation_gate_fn(self, x, gate, gate_params): | |
if self.use_compiled: | |
return torch.compile(_modulation_gate_fn)(x, gate, gate_params) | |
else: | |
return _modulation_gate_fn(x, gate, gate_params) | |
def forward( | |
self, x: Tensor, pe: Tensor, distill_vec: list[ModulationOut], mask: Tensor | |
) -> Tensor: | |
mod = distill_vec | |
# replaced with compiled fn | |
# x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift | |
x_mod = self.modulation_shift_scale_fn(self.pre_norm(x), mod.scale, mod.shift) | |
qkv, mlp = torch.split( | |
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1 | |
) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
q, k = self.norm(q, k, v) | |
# compute attention | |
attn = attention(q, k, v, pe=pe, mask=mask) | |
# compute activation in mlp stream, cat again and run second linear layer | |
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | |
# replaced with compiled fn | |
# return x + mod.gate * output | |
return self.modulation_gate_fn(x, mod.gate, output) | |
class LastLayer(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
patch_size: int, | |
out_channels: int, | |
use_compiled: bool = False, | |
): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear( | |
hidden_size, patch_size * patch_size * out_channels, bias=True | |
) | |
self.use_compiled = use_compiled | |
def device(self): | |
# Get the device of the module (assumes all parameters are on the same device) | |
return next(self.parameters()).device | |
def modulation_shift_scale_fn(self, x, scale, shift): | |
if self.use_compiled: | |
return torch.compile(_modulation_shift_scale_fn)(x, scale, shift) | |
else: | |
return _modulation_shift_scale_fn(x, scale, shift) | |
def forward(self, x: Tensor, distill_vec: list[Tensor]) -> Tensor: | |
shift, scale = distill_vec | |
shift = shift.squeeze(1) | |
scale = scale.squeeze(1) | |
# replaced with compiled fn | |
# x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
x = self.modulation_shift_scale_fn( | |
self.norm_final(x), scale[:, None, :], shift[:, None, :] | |
) | |
x = self.linear(x) | |
return x | |