rahul7star's picture
boilerplate
fcc02a2 verified
import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
import torch.nn.functional as F
from .math import attention, rope
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, use_compiled: bool = False):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
self.use_compiled = use_compiled
def _forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
def forward(self, x: Tensor):
return F.rms_norm(x, self.scale.shape, weight=self.scale, eps=1e-6)
# if self.use_compiled:
# return torch.compile(self._forward)(x)
# else:
# return self._forward(x)
def distribute_modulations(tensor: torch.Tensor):
"""
Distributes slices of the tensor into the block_dict as ModulationOut objects.
Args:
tensor (torch.Tensor): Input tensor with shape [batch_size, vectors, dim].
"""
batch_size, vectors, dim = tensor.shape
block_dict = {}
# HARD CODED VALUES! lookup table for the generated vectors
# TODO: move this into chroma config!
# Add 38 single mod blocks
for i in range(38):
key = f"single_blocks.{i}.modulation.lin"
block_dict[key] = None
# Add 19 image double blocks
for i in range(19):
key = f"double_blocks.{i}.img_mod.lin"
block_dict[key] = None
# Add 19 text double blocks
for i in range(19):
key = f"double_blocks.{i}.txt_mod.lin"
block_dict[key] = None
# Add the final layer
block_dict["final_layer.adaLN_modulation.1"] = None
# 6.2b version
block_dict["lite_double_blocks.4.img_mod.lin"] = None
block_dict["lite_double_blocks.4.txt_mod.lin"] = None
idx = 0 # Index to keep track of the vector slices
for key in block_dict.keys():
if "single_blocks" in key:
# Single block: 1 ModulationOut
block_dict[key] = ModulationOut(
shift=tensor[:, idx : idx + 1, :],
scale=tensor[:, idx + 1 : idx + 2, :],
gate=tensor[:, idx + 2 : idx + 3, :],
)
idx += 3 # Advance by 3 vectors
elif "img_mod" in key:
# Double block: List of 2 ModulationOut
double_block = []
for _ in range(2): # Create 2 ModulationOut objects
double_block.append(
ModulationOut(
shift=tensor[:, idx : idx + 1, :],
scale=tensor[:, idx + 1 : idx + 2, :],
gate=tensor[:, idx + 2 : idx + 3, :],
)
)
idx += 3 # Advance by 3 vectors per ModulationOut
block_dict[key] = double_block
elif "txt_mod" in key:
# Double block: List of 2 ModulationOut
double_block = []
for _ in range(2): # Create 2 ModulationOut objects
double_block.append(
ModulationOut(
shift=tensor[:, idx : idx + 1, :],
scale=tensor[:, idx + 1 : idx + 2, :],
gate=tensor[:, idx + 2 : idx + 3, :],
)
)
idx += 3 # Advance by 3 vectors per ModulationOut
block_dict[key] = double_block
elif "final_layer" in key:
# Final layer: 1 ModulationOut
block_dict[key] = [
tensor[:, idx : idx + 1, :],
tensor[:, idx + 1 : idx + 2, :],
]
idx += 2 # Advance by 3 vectors
return block_dict
class Approximator(nn.Module):
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers=4):
super().__init__()
self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True)
self.layers = nn.ModuleList(
[MLPEmbedder(hidden_dim, hidden_dim) for x in range(n_layers)]
)
self.norms = nn.ModuleList([RMSNorm(hidden_dim) for x in range(n_layers)])
self.out_proj = nn.Linear(hidden_dim, out_dim)
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def forward(self, x: Tensor) -> Tensor:
x = self.in_proj(x)
for layer, norms in zip(self.layers, self.norms):
x = x + layer(norms(x))
x = self.out_proj(x)
return x
class QKNorm(torch.nn.Module):
def __init__(self, dim: int, use_compiled: bool = False):
super().__init__()
self.query_norm = RMSNorm(dim, use_compiled=use_compiled)
self.key_norm = RMSNorm(dim, use_compiled=use_compiled)
self.use_compiled = use_compiled
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
use_compiled: bool = False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim, use_compiled=use_compiled)
self.proj = nn.Linear(dim, dim)
self.use_compiled = use_compiled
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
def _modulation_shift_scale_fn(x, scale, shift):
return (1 + scale) * x + shift
def _modulation_gate_fn(x, gate, gate_params):
return x + gate * gate_params
class DoubleStreamBlock(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float,
qkv_bias: bool = False,
use_compiled: bool = False,
):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_compiled=use_compiled,
)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_compiled=use_compiled,
)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.use_compiled = use_compiled
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def modulation_shift_scale_fn(self, x, scale, shift):
if self.use_compiled:
return torch.compile(_modulation_shift_scale_fn)(x, scale, shift)
else:
return _modulation_shift_scale_fn(x, scale, shift)
def modulation_gate_fn(self, x, gate, gate_params):
if self.use_compiled:
return torch.compile(_modulation_gate_fn)(x, gate, gate_params)
else:
return _modulation_gate_fn(x, gate, gate_params)
def forward(
self,
img: Tensor,
txt: Tensor,
pe: Tensor,
distill_vec: list[ModulationOut],
mask: Tensor,
) -> tuple[Tensor, Tensor]:
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = distill_vec
# prepare image for attention
img_modulated = self.img_norm1(img)
# replaced with compiled fn
# img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_modulated = self.modulation_shift_scale_fn(
img_modulated, img_mod1.scale, img_mod1.shift
)
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(
img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads
)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
# replaced with compiled fn
# txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_modulated = self.modulation_shift_scale_fn(
txt_modulated, txt_mod1.scale, txt_mod1.shift
)
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(
txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads
)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe, mask=mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
# replaced with compiled fn
# img = img + img_mod1.gate * self.img_attn.proj(img_attn)
# img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
img = self.modulation_gate_fn(img, img_mod1.gate, self.img_attn.proj(img_attn))
img = self.modulation_gate_fn(
img,
img_mod2.gate,
self.img_mlp(
self.modulation_shift_scale_fn(
self.img_norm2(img), img_mod2.scale, img_mod2.shift
)
),
)
# calculate the txt bloks
# replaced with compiled fn
# txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
# txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
txt = self.modulation_gate_fn(txt, txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt = self.modulation_gate_fn(
txt,
txt_mod2.gate,
self.txt_mlp(
self.modulation_shift_scale_fn(
self.txt_norm2(txt), txt_mod2.scale, txt_mod2.shift
)
),
)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
use_compiled: bool = False,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim, use_compiled=use_compiled)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.use_compiled = use_compiled
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def modulation_shift_scale_fn(self, x, scale, shift):
if self.use_compiled:
return torch.compile(_modulation_shift_scale_fn)(x, scale, shift)
else:
return _modulation_shift_scale_fn(x, scale, shift)
def modulation_gate_fn(self, x, gate, gate_params):
if self.use_compiled:
return torch.compile(_modulation_gate_fn)(x, gate, gate_params)
else:
return _modulation_gate_fn(x, gate, gate_params)
def forward(
self, x: Tensor, pe: Tensor, distill_vec: list[ModulationOut], mask: Tensor
) -> Tensor:
mod = distill_vec
# replaced with compiled fn
# x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
x_mod = self.modulation_shift_scale_fn(self.pre_norm(x), mod.scale, mod.shift)
qkv, mlp = torch.split(
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1
)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=mask)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
# replaced with compiled fn
# return x + mod.gate * output
return self.modulation_gate_fn(x, mod.gate, output)
class LastLayer(nn.Module):
def __init__(
self,
hidden_size: int,
patch_size: int,
out_channels: int,
use_compiled: bool = False,
):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
self.use_compiled = use_compiled
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def modulation_shift_scale_fn(self, x, scale, shift):
if self.use_compiled:
return torch.compile(_modulation_shift_scale_fn)(x, scale, shift)
else:
return _modulation_shift_scale_fn(x, scale, shift)
def forward(self, x: Tensor, distill_vec: list[Tensor]) -> Tensor:
shift, scale = distill_vec
shift = shift.squeeze(1)
scale = scale.squeeze(1)
# replaced with compiled fn
# x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.modulation_shift_scale_fn(
self.norm_final(x), scale[:, None, :], shift[:, None, :]
)
x = self.linear(x)
return x