import torch cached_multipier = None def get_multiplier(timesteps, num_timesteps=1000): global cached_multipier if cached_multipier is None: # creates a bell curve x = torch.arange(num_timesteps, dtype=torch.float32) y = torch.exp(-2 * ((x - num_timesteps / 2) / num_timesteps) ** 2) # Shift minimum to 0 y_shifted = y - y.min() # Scale to make mean 1 cached_multipier = y_shifted * (num_timesteps / y_shifted.sum()) scale_list = [] # get the idx multiplier for each timestep for i in range(timesteps.shape[0]): idx = min(int(timesteps[i].item()) - 1, 0) scale_list.append(cached_multipier[idx:idx + 1]) scales = torch.cat(scale_list, dim=0) batch_multiplier = scales.view(-1, 1, 1, 1) return batch_multiplier def get_blended_blur_noise(latents, noise, timestep): latent_chunks = torch.chunk(latents, latents.shape[0], dim=0) # timestep is 1000 to 0 # timestep = timestep.to(latents.device, dtype=latents.dtype) # scale it so timestep 1000 is 0 and 0 is 2 # blur_strength = value_map(timestep, 1000, 0, 0, 1.0) # blur_strength = timestep / 500.0 # blur_strength = blur_strength.view(-1, 1, 1, 1) # scale to 2.0 max # blur_strength = get_multiplier(timestep).to( # latents.device, dtype=latents.dtype # ) * 2.0 # blur_strength = 2.0 blurred_latent_chunks = [] for i in range(len(latent_chunks)): latent_chunk = latent_chunks[i] # get two random scalers 0.1 to 0.9 # scaler1 = random.uniform(0.2, 0.8) scaler1 = 0.25 scaler2 = scaler1 # shrink latents by 1/4 and bring them back for blurring using interpolation blur_latents = torch.nn.functional.interpolate( latent_chunk, size=(int(latents.shape[2] * scaler1), int(latents.shape[3] * scaler2)), mode='bilinear', align_corners=False ) blur_latents = torch.nn.functional.interpolate( blur_latents, size=(latents.shape[2], latents.shape[3]), mode='bilinear', align_corners=False ) # only the difference of the blur from ground truth blur_latents = blur_latents - latent_chunk blurred_latent_chunks.append(blur_latents) blur_latents = torch.cat(blurred_latent_chunks, dim=0) # make random strength along batch 0 to 1 blur_strength = torch.rand((latents.shape[0], 1, 1, 1), device=latents.device, dtype=latents.dtype) * 2 blur_latents = blur_latents * blur_strength noise = noise + blur_latents return noise