File size: 16,718 Bytes
fc6bdf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import os
from einops import rearrange

import torch
import torch.nn as nn

from xfuser.core.distributed import (
    get_sequence_parallel_rank,
    get_sequence_parallel_world_size,
    get_sp_group,
)
from einops import rearrange, repeat
from functools import lru_cache
import imageio
import uuid
from tqdm import tqdm
import numpy as np
import subprocess
import soundfile as sf
import torchvision
import binascii
import os.path as osp
from skimage import color

VID_EXTENSIONS = (".mp4", ".avi", ".mov", ".mkv")
ASPECT_RATIO_627 = {
     '0.26': ([320, 1216], 1), '0.38': ([384, 1024], 1), '0.50': ([448, 896], 1), '0.67': ([512, 768], 1), 
     '0.82': ([576, 704], 1),  '1.00': ([640, 640], 1),  '1.22': ([704, 576], 1), '1.50': ([768, 512], 1), 
     '1.86': ([832, 448], 1),  '2.00': ([896, 448], 1),  '2.50': ([960, 384], 1), '2.83': ([1088, 384], 1), 
     '3.60': ([1152, 320], 1), '3.80': ([1216, 320], 1), '4.00': ([1280, 320], 1)}


ASPECT_RATIO_960 = {
     '0.22': ([448, 2048], 1), '0.29': ([512, 1792], 1), '0.36': ([576, 1600], 1), '0.45': ([640, 1408], 1), 
     '0.55': ([704, 1280], 1), '0.63': ([768, 1216], 1), '0.76': ([832, 1088], 1), '0.88': ([896, 1024], 1), 
     '1.00': ([960, 960], 1), '1.14': ([1024, 896], 1), '1.31': ([1088, 832], 1), '1.50': ([1152, 768], 1), 
     '1.58': ([1216, 768], 1), '1.82': ([1280, 704], 1), '1.91': ([1344, 704], 1), '2.20': ([1408, 640], 1), 
     '2.30': ([1472, 640], 1), '2.67': ([1536, 576], 1), '2.89': ([1664, 576], 1), '3.62': ([1856, 512], 1), 
     '3.75': ([1920, 512], 1)}



def torch_gc():
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()



def split_token_counts_and_frame_ids(T, token_frame, world_size, rank):

    S = T * token_frame
    split_sizes = [S // world_size + (1 if i < S % world_size else 0) for i in range(world_size)]
    start = sum(split_sizes[:rank])
    end = start + split_sizes[rank]
    counts = [0] * T
    for idx in range(start, end):
        t = idx // token_frame
        counts[t] += 1

    counts_filtered = []
    frame_ids = []
    for t, c in enumerate(counts):
        if c > 0:
            counts_filtered.append(c)
            frame_ids.append(t)
    return counts_filtered, frame_ids


def normalize_and_scale(column, source_range, target_range, epsilon=1e-8):

    source_min, source_max = source_range
    new_min, new_max = target_range
 
    normalized = (column - source_min) / (source_max - source_min + epsilon)
    scaled = normalized * (new_max - new_min) + new_min
    return scaled


@torch.compile
def calculate_x_ref_attn_map(visual_q, ref_k, ref_target_masks, mode='mean', attn_bias=None):
    
    ref_k = ref_k.to(visual_q.dtype).to(visual_q.device)
    scale = 1.0 / visual_q.shape[-1] ** 0.5
    visual_q = visual_q * scale
    visual_q = visual_q.transpose(1, 2)
    ref_k = ref_k.transpose(1, 2)
    attn = visual_q @ ref_k.transpose(-2, -1)

    if attn_bias is not None:
        attn = attn + attn_bias

    x_ref_attn_map_source = attn.softmax(-1) # B, H, x_seqlens, ref_seqlens


    x_ref_attn_maps = []
    ref_target_masks = ref_target_masks.to(visual_q.dtype)
    x_ref_attn_map_source = x_ref_attn_map_source.to(visual_q.dtype)

    for class_idx, ref_target_mask in enumerate(ref_target_masks):
        torch_gc()
        ref_target_mask = ref_target_mask[None, None, None, ...]
        x_ref_attnmap = x_ref_attn_map_source * ref_target_mask
        x_ref_attnmap = x_ref_attnmap.sum(-1) / ref_target_mask.sum() # B, H, x_seqlens, ref_seqlens --> B, H, x_seqlens
        x_ref_attnmap = x_ref_attnmap.permute(0, 2, 1) # B, x_seqlens, H
       
        if mode == 'mean':
            x_ref_attnmap = x_ref_attnmap.mean(-1) # B, x_seqlens
        elif mode == 'max':
            x_ref_attnmap = x_ref_attnmap.max(-1) # B, x_seqlens
        
        x_ref_attn_maps.append(x_ref_attnmap)
    
    del attn
    del x_ref_attn_map_source
    torch_gc()

    return torch.concat(x_ref_attn_maps, dim=0)


def get_attn_map_with_target(visual_q, ref_k, shape, ref_target_masks=None, split_num=2, enable_sp=False):
    """Args:
        query (torch.tensor): B M H K
        key (torch.tensor): B M H K
        shape (tuple): (N_t, N_h, N_w)
        ref_target_masks: [B, N_h * N_w]
    """

    N_t, N_h, N_w = shape
    if enable_sp:
        ref_k = get_sp_group().all_gather(ref_k, dim=1)
    
    x_seqlens = N_h * N_w
    ref_k     = ref_k[:, :x_seqlens]
    _, seq_lens, heads, _ = visual_q.shape
    class_num, _ = ref_target_masks.shape
    x_ref_attn_maps = torch.zeros(class_num, seq_lens).to(visual_q.device).to(visual_q.dtype)

    split_chunk = heads // split_num
    
    for i in range(split_num):
        x_ref_attn_maps_perhead = calculate_x_ref_attn_map(visual_q[:, :, i*split_chunk:(i+1)*split_chunk, :], ref_k[:, :, i*split_chunk:(i+1)*split_chunk, :], ref_target_masks)
        x_ref_attn_maps += x_ref_attn_maps_perhead
    
    return x_ref_attn_maps / split_num


def rotate_half(x):
    x = rearrange(x, "... (d r) -> ... d r", r=2)
    x1, x2 = x.unbind(dim=-1)
    x = torch.stack((-x2, x1), dim=-1)
    return rearrange(x, "... d r -> ... (d r)")


class RotaryPositionalEmbedding1D(nn.Module):

    def __init__(self,
                 head_dim,
                 ):
        super().__init__()
        self.head_dim = head_dim
        self.base = 10000


    @lru_cache(maxsize=32)
    def precompute_freqs_cis_1d(self, pos_indices):

        freqs = 1.0 / (self.base ** (torch.arange(0, self.head_dim, 2)[: (self.head_dim // 2)].float() / self.head_dim))
        freqs = freqs.to(pos_indices.device)
        freqs = torch.einsum("..., f -> ... f", pos_indices.float(), freqs)
        freqs = repeat(freqs, "... n -> ... (n r)", r=2)
        return freqs

    def forward(self, x, pos_indices):
        """1D RoPE.

        Args:
            query (torch.tensor): [B, head, seq, head_dim]
            pos_indices (torch.tensor): [seq,]
        Returns:
            query with the same shape as input.
        """
        freqs_cis = self.precompute_freqs_cis_1d(pos_indices)

        x_ = x.float()

        freqs_cis = freqs_cis.float().to(x.device)
        cos, sin = freqs_cis.cos(), freqs_cis.sin()
        cos, sin = rearrange(cos, 'n d -> 1 1 n d'), rearrange(sin, 'n d -> 1 1 n d')
        x_ = (x_ * cos) + (rotate_half(x_) * sin)

        return x_.type_as(x)
    


def rand_name(length=8, suffix=''):
    name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
    if suffix:
        if not suffix.startswith('.'):
            suffix = '.' + suffix
        name += suffix
    return name

def cache_video(tensor,
                save_file=None,
                fps=30,
                suffix='.mp4',
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                retry=5):
    
    # cache file
    cache_file = osp.join('/tmp', rand_name(
        suffix=suffix)) if save_file is None else save_file

    # save to cache
    error = None
    for _ in range(retry):
       
        # preprocess
        tensor = tensor.clamp(min(value_range), max(value_range))
        tensor = torch.stack([
                torchvision.utils.make_grid(
                    u, nrow=nrow, normalize=normalize, value_range=value_range)
                for u in tensor.unbind(2)
            ],
                                 dim=1).permute(1, 2, 3, 0)
        tensor = (tensor * 255).type(torch.uint8).cpu()

        # write video
        writer = imageio.get_writer(cache_file, fps=fps, codec='libx264', quality=10, ffmpeg_params=["-crf", "10"])
        for frame in tensor.numpy():
            writer.append_data(frame)
        writer.close()
        return cache_file

def save_video_ffmpeg(gen_video_samples, save_path, vocal_audio_list, fps=25, quality=5, high_quality_save=False):
    
    def save_video(frames, save_path, fps, quality=9, ffmpeg_params=None):
        writer = imageio.get_writer(
            save_path, fps=fps, quality=quality, ffmpeg_params=ffmpeg_params
        )
        for frame in tqdm(frames, desc="Saving video"):
            frame = np.array(frame)
            writer.append_data(frame)
        writer.close()
    save_path_tmp = save_path + "-temp.mp4"

    if high_quality_save:
        cache_video(
                    tensor=gen_video_samples.unsqueeze(0),
                    save_file=save_path_tmp,
                    fps=fps,
                    nrow=1,
                    normalize=True,
                    value_range=(-1, 1)
                    )
    else:
        video_audio = (gen_video_samples+1)/2 # C T H W
        video_audio = video_audio.permute(1, 2, 3, 0).cpu().numpy()
        video_audio = np.clip(video_audio * 255, 0, 255).astype(np.uint8)  # to [0, 255]
        save_video(video_audio, save_path_tmp, fps=fps, quality=quality)


    # crop audio according to video length
    _, T, _, _ = gen_video_samples.shape
    duration = T / fps
    save_path_crop_audio = save_path + "-cropaudio.wav"
    final_command = [
        "ffmpeg",
        "-i",
        vocal_audio_list[0],
        "-t",
        f'{duration}',
        save_path_crop_audio,
    ]
    subprocess.run(final_command, check=True)

    save_path = save_path + ".mp4"
    if high_quality_save:
        final_command = [
            "ffmpeg",
            "-y",
            "-i", save_path_tmp,
            "-i", save_path_crop_audio,
            "-c:v", "libx264",
            "-crf", "0",
            "-preset", "veryslow",
            "-c:a", "aac", 
            "-shortest",
            save_path,
        ]
        subprocess.run(final_command, check=True)
        os.remove(save_path_tmp)
        os.remove(save_path_crop_audio)
    else:
        final_command = [
            "ffmpeg",
            "-y",
            "-i",
            save_path_tmp,
            "-i",
            save_path_crop_audio,
            "-c:v",
            "libx264",
            "-c:a",
            "aac",
            "-shortest",
            save_path,
        ]
        subprocess.run(final_command, check=True)
        os.remove(save_path_tmp)
        os.remove(save_path_crop_audio)


class MomentumBuffer:
    def __init__(self, momentum: float): 
        self.momentum = momentum 
        self.running_average = 0 
    
    def update(self, update_value: torch.Tensor): 
        new_average = self.momentum * self.running_average 
        self.running_average = update_value + new_average
    


def project( 
        v0: torch.Tensor, # [B, C, T, H, W] 
        v1: torch.Tensor, # [B, C, T, H, W] 
        ): 
    dtype = v0.dtype 
    v0, v1 = v0.double(), v1.double() 
    v1 = torch.nn.functional.normalize(v1, dim=[-1, -2, -3, -4]) 
    v0_parallel = (v0 * v1).sum(dim=[-1, -2, -3, -4], keepdim=True) * v1 
    v0_orthogonal = v0 - v0_parallel
    return v0_parallel.to(dtype), v0_orthogonal.to(dtype)


def adaptive_projected_guidance( 
          diff: torch.Tensor, # [B, C, T, H, W] 
          pred_cond: torch.Tensor, # [B, C, T, H, W] 
          momentum_buffer: MomentumBuffer = None, 
          eta: float = 0.0,
          norm_threshold: float = 55,
          ): 
    if momentum_buffer is not None: 
        momentum_buffer.update(diff) 
        diff = momentum_buffer.running_average
    if norm_threshold > 0: 
        ones = torch.ones_like(diff) 
        diff_norm = diff.norm(p=2, dim=[-1, -2, -3, -4], keepdim=True) 
        print(f"diff_norm: {diff_norm}")
        scale_factor = torch.minimum(ones, norm_threshold / diff_norm) 
        diff = diff * scale_factor 
    diff_parallel, diff_orthogonal = project(diff, pred_cond) 
    normalized_update = diff_orthogonal + eta * diff_parallel
    return normalized_update



def match_and_blend_colors(source_chunk: torch.Tensor, reference_image: torch.Tensor, strength: float) -> torch.Tensor:
    """
    Matches the color of a source video chunk to a reference image and blends with the original.

    Args:
        source_chunk (torch.Tensor): The video chunk to be color-corrected (B, C, T, H, W) in range [-1, 1].
                                     Assumes B=1 (batch size of 1).
        reference_image (torch.Tensor): The reference image (B, C, 1, H, W) in range [-1, 1].
                                        Assumes B=1 and T=1 (single reference frame).
        strength (float): The strength of the color correction (0.0 to 1.0).
                          0.0 means no correction, 1.0 means full correction.

    Returns:
        torch.Tensor: The color-corrected and blended video chunk.
    """
    # print(f"[match_and_blend_colors] Input source_chunk shape: {source_chunk.shape}, reference_image shape: {reference_image.shape}, strength: {strength}")

    if strength == 0.0:
        # print(f"[match_and_blend_colors] Strength is 0, returning original source_chunk.")
        return source_chunk

    if not 0.0 <= strength <= 1.0:
        raise ValueError(f"Strength must be between 0.0 and 1.0, got {strength}")

    device = source_chunk.device
    dtype = source_chunk.dtype

    # Squeeze batch dimension, permute to T, H, W, C for skimage
    # Source: (1, C, T, H, W) -> (T, H, W, C)
    source_np = source_chunk.squeeze(0).permute(1, 2, 3, 0).cpu().numpy()
    # Reference: (1, C, 1, H, W) -> (H, W, C)
    ref_np = reference_image.squeeze(0).squeeze(1).permute(1, 2, 0).cpu().numpy() # Squeeze T dimension as well

    # Normalize from [-1, 1] to [0, 1] for skimage
    source_np_01 = (source_np + 1.0) / 2.0
    ref_np_01 = (ref_np + 1.0) / 2.0

    # Clip to ensure values are strictly in [0, 1] after potential float precision issues
    source_np_01 = np.clip(source_np_01, 0.0, 1.0)
    ref_np_01 = np.clip(ref_np_01, 0.0, 1.0)

    # Convert reference to Lab
    try:
        ref_lab = color.rgb2lab(ref_np_01)
    except ValueError as e:
        # Handle potential errors if image data is not valid for conversion
        print(f"Warning: Could not convert reference image to Lab: {e}. Skipping color correction for this chunk.")
        return source_chunk


    corrected_frames_np_01 = []
    for i in range(source_np_01.shape[0]): # Iterate over time (T)
        source_frame_rgb_01 = source_np_01[i]
        
        try:
            source_lab = color.rgb2lab(source_frame_rgb_01)
        except ValueError as e:
            print(f"Warning: Could not convert source frame {i} to Lab: {e}. Using original frame.")
            corrected_frames_np_01.append(source_frame_rgb_01)
            continue

        corrected_lab_frame = source_lab.copy()

        # Perform color transfer for L, a, b channels
        for j in range(3): # L, a, b
            mean_src, std_src = source_lab[:, :, j].mean(), source_lab[:, :, j].std()
            mean_ref, std_ref = ref_lab[:, :, j].mean(), ref_lab[:, :, j].std()

            # Avoid division by zero if std_src is 0
            if std_src == 0:
                # If source channel has no variation, keep it as is, but shift by reference mean
                # This case is debatable, could also just copy source or target mean.
                # Shifting by target mean helps if source is flat but target isn't.
                corrected_lab_frame[:, :, j] = mean_ref 
            else:
                corrected_lab_frame[:, :, j] = (corrected_lab_frame[:, :, j] - mean_src) * (std_ref / std_src) + mean_ref
        
        try:
            fully_corrected_frame_rgb_01 = color.lab2rgb(corrected_lab_frame)
        except ValueError as e:
            print(f"Warning: Could not convert corrected frame {i} back to RGB: {e}. Using original frame.")
            corrected_frames_np_01.append(source_frame_rgb_01)
            continue
            
        # Clip again after lab2rgb as it can go slightly out of [0,1]
        fully_corrected_frame_rgb_01 = np.clip(fully_corrected_frame_rgb_01, 0.0, 1.0)

        # Blend with original source frame (in [0,1] RGB)
        blended_frame_rgb_01 = (1 - strength) * source_frame_rgb_01 + strength * fully_corrected_frame_rgb_01
        corrected_frames_np_01.append(blended_frame_rgb_01)

    corrected_chunk_np_01 = np.stack(corrected_frames_np_01, axis=0)

    # Convert back to [-1, 1]
    corrected_chunk_np_minus1_1 = (corrected_chunk_np_01 * 2.0) - 1.0

    # Permute back to (C, T, H, W), add batch dim, and convert to original torch.Tensor type and device
    # (T, H, W, C) -> (C, T, H, W)
    corrected_chunk_tensor = torch.from_numpy(corrected_chunk_np_minus1_1).permute(3, 0, 1, 2).unsqueeze(0)
    corrected_chunk_tensor = corrected_chunk_tensor.contiguous() # Ensure contiguous memory layout
    output_tensor = corrected_chunk_tensor.to(device=device, dtype=dtype)
    # print(f"[match_and_blend_colors] Output tensor shape: {output_tensor.shape}")
    return output_tensor