File size: 5,170 Bytes
fc6bdf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import binascii
import os
import os.path as osp
import cv2

import imageio
import torch
import torchvision
from PIL import Image
import librosa
import soundfile as sf
import subprocess
from decord import VideoReader, cpu
import gc

__all__ = ['cache_video', 'cache_image', 'str2bool']


def rand_name(length=8, suffix=''):
    name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
    if suffix:
        if not suffix.startswith('.'):
            suffix = '.' + suffix
        name += suffix
    return name



def str2bool(v):
    """
    Convert a string to a boolean.

    Supported true values: 'yes', 'true', 't', 'y', '1'
    Supported false values: 'no', 'false', 'f', 'n', '0'

    Args:
        v (str): String to convert.

    Returns:
        bool: Converted boolean value.

    Raises:
        argparse.ArgumentTypeError: If the value cannot be converted to boolean.
    """
    if isinstance(v, bool):
        return v
    v_lower = v.lower()
    if v_lower in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v_lower in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected (True/False)')
    
def cache_video(tensor,
                save_file=None,
                fps=30,
                suffix='.mp4',
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                retry=5):
    # cache file
    cache_file = osp.join('/tmp', rand_name(
        suffix=suffix)) if save_file is None else save_file

    # save to cache
    error = None
    for _ in range(retry):
        try:
            # preprocess
            tensor = tensor.clamp(min(value_range), max(value_range))
            tensor = torch.stack([
                torchvision.utils.make_grid(
                    u, nrow=nrow, normalize=normalize, value_range=value_range)
                for u in tensor.unbind(2)
            ],
                                 dim=1).permute(1, 2, 3, 0)
            tensor = (tensor * 255).type(torch.uint8).cpu()

            # write video
            writer = imageio.get_writer(
                cache_file, fps=fps, codec='libx264', quality=8)
            for frame in tensor.numpy():
                writer.append_data(frame)
            writer.close()
            return cache_file
        except Exception as e:
            error = e
            continue
    else:
        print(f'cache_video failed, error: {error}', flush=True)
        return None


def cache_image(tensor,
                save_file,
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                retry=5):
    # cache file
    suffix = osp.splitext(save_file)[1]
    if suffix.lower() not in [
            '.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp'
    ]:
        suffix = '.png'

    # save to cache
    error = None
    for _ in range(retry):
        try:
            tensor = tensor.clamp(min(value_range), max(value_range))
            torchvision.utils.save_image(
                tensor,
                save_file,
                nrow=nrow,
                normalize=normalize,
                value_range=value_range)
            return save_file
        except Exception as e:
            error = e
            continue

def convert_video_to_h264(input_video_path, output_video_path):
    subprocess.run(
        ['ffmpeg', '-i', input_video_path, '-c:v', 'libx264', '-c:a', 'copy', output_video_path],
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE
    )


def is_video(path):
    video_exts = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg']
    return os.path.splitext(path)[1].lower() in video_exts


def extract_specific_frames(video_path, frame_id):
    if is_video(video_path):
        vr = VideoReader(video_path, ctx=cpu(0))
        if frame_id < vr._num_frame:
            frame = vr[frame_id].asnumpy()  # RGB
        else:
            frame = vr[-1].asnumpy()
        del vr
        gc.collect()
        frame = Image.fromarray(frame)
    else:
        frame = Image.open(video_path).convert("RGB")
    return frame

def get_video_codec(video_path):
    result = subprocess.run(
        ['ffprobe', '-v', 'error', '-select_streams', 'v:0',
         '-show_entries', 'stream=codec_name', '-of', 'default=nw=1:nk=1', video_path],
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE
    )
    codec = result.stdout.decode().strip()
    return codec



def split_wav_librosa(wav_path, segments, save_dir):
    y, sr = librosa.load(wav_path, sr=None)
    filename = wav_path.split('/')[-1].split('.')[0]
    save_list = []
    for idx, (start, end) in enumerate(segments):
        start_sample = int(start * sr)
        end_sample = int(end * sr)
        segment = y[start_sample:end_sample]
        out_path = os.path.join(save_dir, filename + str(start) + '_' + str(end) + '.wav')
        sf.write(out_path, segment, sr)
        print(f"Saved {out_path}: {start}s to {end}s")
        save_list.append(out_path)
    return save_list