Spaces:
Running
Running
File size: 19,978 Bytes
fcc02a2 36a7343 fcc02a2 4238a80 fcc02a2 703133d fcc02a2 36a7343 fcc02a2 aee06c1 4238a80 fcc02a2 aee06c1 fcc02a2 aee06c1 fcc02a2 4238a80 fcc02a2 4238a80 aee06c1 4238a80 aee06c1 fcc02a2 aee06c1 fcc02a2 4238a80 fcc02a2 aee06c1 fcc02a2 4238a80 aee06c1 fcc02a2 aee06c1 fcc02a2 4238a80 aee06c1 4238a80 aee06c1 4238a80 aee06c1 4238a80 fcc02a2 aee06c1 4238a80 aee06c1 4238a80 aee06c1 4238a80 aee06c1 4238a80 fcc02a2 aee06c1 4238a80 aee06c1 4238a80 aee06c1 fcc02a2 4238a80 fcc02a2 aee06c1 4238a80 fcc02a2 aee06c1 fcc02a2 aee06c1 4238a80 fcc02a2 aee06c1 4238a80 e9c26a0 4238a80 fcc02a2 aee06c1 fcc02a2 4238a80 aee06c1 4238a80 aee06c1 4238a80 aee06c1 4238a80 aee06c1 4238a80 aee06c1 4238a80 aee06c1 4238a80 aee06c1 4238a80 aee06c1 fcc02a2 7b02a6f fcc02a2 7b02a6f fcc02a2 93596a6 fcc02a2 93596a6 fcc02a2 93596a6 fcc02a2 1c3c2fd 9506a92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import os
from huggingface_hub import whoami
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import sys
import spaces
# Add the current working directory to the Python path
sys.path.insert(0, os.getcwd())
import gradio as gr
from PIL import Image
import torch
import uuid
import os
import shutil
import json
import yaml
from slugify import slugify
from transformers import AutoProcessor, AutoModelForCausalLM
import logging
import os
import yaml
import uuid
from slugify import slugify
import gradio as gr # Assuming gr is from gradio for error/warning handling
sys.path.insert(0, "ai-toolkit")
from toolkit.job import get_job
MAX_IMAGES = 150
def load_captioning(uploaded_files, concept_sentence):
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
updates = []
if len(uploaded_images) <= 1:
raise gr.Error(
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
)
elif len(uploaded_images) > MAX_IMAGES:
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
# Update for the captioning_area
# for _ in range(3):
updates.append(gr.update(visible=True))
# Update visibility and image for each captioning row and image
for i in range(1, MAX_IMAGES + 1):
# Determine if the current row and image should be visible
visible = i <= len(uploaded_images)
# Update visibility of the captioning row
updates.append(gr.update(visible=visible))
# Update for image component - display image if available, otherwise hide
image_value = uploaded_images[i - 1] if visible else None
updates.append(gr.update(value=image_value, visible=visible))
corresponding_caption = False
if(image_value):
base_name = os.path.splitext(os.path.basename(image_value))[0]
print(base_name)
print(image_value)
if base_name in txt_files_dict:
print("entrou")
with open(txt_files_dict[base_name], 'r') as file:
corresponding_caption = file.read()
# Update value of captioning area
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
updates.append(gr.update(value=text_value, visible=visible))
# Update for the sample caption area
updates.append(gr.update(visible=True))
# Update prompt samples
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
updates.append(gr.update(visible=True))
return updates
def hide_captioning():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def create_dataset(*inputs):
print("Creating dataset")
images = inputs[0]
destination_folder = str(f"datasets")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(images):
new_image_path = shutil.copy(image, destination_folder)
original_caption = inputs[index + 1]
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": original_caption}
jsonl_file.write(json.dumps(data) + "\n")
return destination_folder
def run_captioning(images, concept_sentence, *captions):
#Load internally to not consume resources for training
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
captions = list(captions)
for i, image_path in enumerate(images):
print(captions[i])
if isinstance(image_path, str): # If image is a file path
image = Image.open(image_path).convert("RGB")
prompt = "<DETAILED_CAPTION>"
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
if concept_sentence:
caption_text = f"{caption_text} [trigger]"
captions[i] = caption_text
yield captions
model.to("cpu")
del model
del processor
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def get_duration( lora_name,
concept_sentence,
steps,
lr,
rank,
model_to_train,
low_vram,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,):
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def start_training(
lora_name,
concept_sentence,
steps,
lr,
rank,
model_to_train,
low_vram,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,
):
print("Starting training process")
print(f"Input parameters: lora_name={lora_name}, concept_sentence={concept_sentence}, "
f"steps={steps}, lr={lr}, rank={rank}, model_to_train={model_to_train}, "
f"low_vram={low_vram}, dataset_folder={dataset_folder}, "
f"sample_1={sample_1}, sample_2={sample_2}, sample_3={sample_3}, "
f"use_more_advanced_options={use_more_advanced_options}, "
f"more_advanced_options={more_advanced_options}")
push_to_hub = True
print("Checking LoRA name")
if not lora_name:
print("LoRA name is empty or None")
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
# Check Hugging Face permissions
try:
user_info = whoami()
print(f"Hugging Face user info: {user_info}")
if user_info["auth"]["accessToken"]["role"] == "write" or \
"repo.edit" in user_info["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
print(f"Starting training locally for user: {user_info['name']}. LoRA will be available locally and on Hugging Face.")
else:
push_to_hub = False
print("No write access to Hugging Face. Training locally only.")
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
except Exception as e:
push_to_hub = False
print(f"Error checking Hugging Face permissions: {str(e)}")
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
print("Training started")
slugged_lora_name = slugify(lora_name)
print(f"Slugged LoRA name: {slugged_lora_name}")
# Load the default config
config_path_default = "config/examples/train_lora_flux_24gb.yaml"
print(f"Loading default config from: {config_path_default}")
try:
with open(config_path_default, "r") as f:
config = yaml.safe_load(f)
print(f"Loaded config: {config}")
except Exception as e:
print(f"Failed to load config from {config_path_default}: {str(e)}")
raise
# Update the config with user inputs
print("Updating config with user inputs")
try:
config["config"]["name"] = slugged_lora_name
config["config"]["process"][0]["model"]["low_vram"] = low_vram
config["config"]["process"][0]["train"]["skip_first_sample"] = True
config["config"]["process"][0]["train"]["steps"] = int(steps)
config["config"]["process"][0]["train"]["lr"] = float(lr)
config["config"]["process"][0]["network"]["linear"] = int(rank)
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
print(f"Updated config fields: name={slugged_lora_name}, low_vram={low_vram}, steps={steps}, "
f"lr={lr}, rank={rank}, dataset_folder={dataset_folder}, push_to_hub={push_to_hub}")
except KeyError as e:
print(f"Config structure error: Missing key {str(e)}")
raise
except Exception as e:
print(f"Error updating config: {str(e)}")
raise
# Handle Hugging Face repository settings
if push_to_hub:
try:
username = whoami()["name"]
print(f"Hugging Face username: {username}")
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
config["config"]["process"][0]["save"]["hf_private"] = True
print(f"Set Hugging Face repo: {username}/{slugged_lora_name}")
except Exception as e:
print(f"Error retrieving Hugging Face username: {str(e)}")
raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
# Handle concept sentence
if concept_sentence:
config["config"]["process"][0]["trigger_word"] = concept_sentence
print(f"Set trigger_word: {concept_sentence}")
# Handle sampling prompts
if sample_1 or sample_2 or sample_3:
config["config"]["process"][0]["train"]["disable_sampling"] = False
config["config"]["process"][0]["sample"]["sample_every"] = steps
config["config"]["process"][0]["sample"]["sample_steps"] = 28
config["config"]["process"][0]["sample"]["prompts"] = []
if sample_1:
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
if sample_2:
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
if sample_3:
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
print(f"Sampling enabled with prompts: {config['config']['process'][0]['sample']['prompts']}")
else:
config["config"]["process"][0]["train"]["disable_sampling"] = True
print("Sampling disabled")
# Handle model selection
if model_to_train == "schnell":
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
config["config"]["process"][0]["sample"]["sample_steps"] = 4
print("Using schnell model configuration")
# Handle advanced options
if use_more_advanced_options:
pass
# Save the updated config
print("Saving updated config")
random_config_name = str(uuid.uuid4())
os.makedirs("tmp", exist_ok=True)
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
try:
with open(config_path, "w") as f:
yaml.dump(config, f)
print(f"Config saved to: {config_path}")
except Exception as e:
print(f"Error saving config to {config_path}: {str(e)}")
raise
# Run the training job
print(f"Starting training job with config: {config_path}")
try:
job = get_job(config_path)
print("Job object created successfully")
job.run()
print("Training job completed")
job.cleanup()
print("Job cleanup completed")
except Exception as e:
print(f"Error during training job execution: {str(e)}")
raise
print(f"Training completed successfully. Model saved as {slugged_lora_name}")
return f"Training completed successfully. Model saved as {slugged_lora_name}"
config_yaml = '''
device: cuda:0
model:
is_flux: true
quantize: true
network:
linear: 16 #it will overcome the 'rank' parameter
linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
type: lora
sample:
guidance_scale: 3.5
height: 1024
neg: '' #doesn't work for FLUX
sample_every: 1000
sample_steps: 28
sampler: flowmatch
seed: 42
walk_seed: true
width: 1024
save:
dtype: float16
hf_private: true
max_step_saves_to_keep: 4
push_to_hub: true
save_every: 10000
train:
batch_size: 1
dtype: bf16
ema_config:
ema_decay: 0.99
use_ema: true
gradient_accumulation_steps: 1
gradient_checkpointing: true
noise_scheduler: flowmatch
optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
train_text_encoder: false #probably doesn't work for flux
train_unet: true
'''
theme = gr.themes.Monochrome(
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
)
css = """
h1{font-size: 2em}
h3{margin-top: 0}
#component-1{text-align:center}
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
.tabitem{border: 0px}
.group_padding{padding: .55em}
"""
with gr.Blocks(theme=theme, css=css) as demo:
gr.Markdown(
"""# LoRA Ease for FLUX 🧞♂️
### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit)"""
)
with gr.Column() as main_ui:
with gr.Row():
lora_name = gr.Textbox(
label="The name of your LoRA",
info="This has to be a unique name",
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
)
concept_sentence = gr.Textbox(
label="Trigger word/sentence",
info="Trigger word or sentence to be used",
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
interactive=True,
)
with gr.Group(visible=True) as image_upload:
with gr.Row():
images = gr.File(
file_types=["image", ".txt"],
label="Upload your images",
file_count="multiple",
interactive=True,
visible=True,
scale=1,
)
with gr.Column(scale=3, visible=False) as captioning_area:
with gr.Column():
gr.Markdown(
"""# Custom captioning
<p style="margin-top:0">You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.</p>
""", elem_classes="group_padding")
do_captioning = gr.Button("Add AI captions with Florence-2")
output_components = [captioning_area]
caption_list = []
for i in range(1, MAX_IMAGES + 1):
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
with locals()[f"captioning_row_{i}"]:
locals()[f"image_{i}"] = gr.Image(
type="filepath",
width=111,
height=111,
min_width=111,
interactive=False,
scale=2,
show_label=False,
show_share_button=False,
show_download_button=False,
)
locals()[f"caption_{i}"] = gr.Textbox(
label=f"Caption {i}", scale=15, interactive=True
)
output_components.append(locals()[f"captioning_row_{i}"])
output_components.append(locals()[f"image_{i}"])
output_components.append(locals()[f"caption_{i}"])
caption_list.append(locals()[f"caption_{i}"])
with gr.Accordion("Advanced options", open=False):
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
model_to_train = gr.Radio(["dev", "schnell"], value="dev", label="Model to train")
low_vram = gr.Checkbox(label="Low VRAM", value=True)
with gr.Accordion("Even more advanced options", open=False):
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
more_advanced_options = gr.Code(config_yaml, language="yaml")
with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
gr.Markdown(
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
)
sample_1 = gr.Textbox(label="Test prompt 1")
sample_2 = gr.Textbox(label="Test prompt 2")
sample_3 = gr.Textbox(label="Test prompt 3")
output_components.append(sample)
output_components.append(sample_1)
output_components.append(sample_2)
output_components.append(sample_3)
start = gr.Button("Start training", visible=False)
output_components.append(start)
progress_area = gr.Markdown("")
dataset_folder = gr.State()
images.upload(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components
)
images.delete(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components
)
images.clear(
hide_captioning,
outputs=[captioning_area, sample, start]
)
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
fn=start_training,
inputs=[
lora_name,
concept_sentence,
steps,
lr,
rank,
model_to_train,
low_vram,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options
],
outputs=progress_area,
)
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
if __name__ == "__main__":
demo.launch(share=True, show_error=True) |