|
import os |
|
import gradio as gr |
|
import json |
|
import logging |
|
import torch |
|
from PIL import Image |
|
import spaces |
|
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler |
|
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download |
|
import copy |
|
import random |
|
import time |
|
import re |
|
import math |
|
import numpy as np |
|
import traceback |
|
|
|
|
|
loras = [ |
|
{ |
|
"repo": "flymy-ai/qwen-image-realism-lora", |
|
"image": "https://huggingface.co/flymy-ai/qwen-image-realism-lora/resolve/main/assets/flymy_realism.png", |
|
"trigger_word": "Super Realism portrait of", |
|
"trigger_position": "prepend", |
|
"title": "Super Realism" |
|
}, |
|
{ |
|
"repo": "starsfriday/Qwen-Image-NSFW", |
|
"image": "https://huggingface.co/threecrowco/VolkClipartQwen/resolve/main/images/_app_ai-toolkit_output_VolkDrawings_Qwen_v1_samples_1754805220500__000003000_3.jpg", |
|
"trigger_word": "rsq ", |
|
"trigger_position": "prepend", |
|
"title": "NSF" |
|
}, |
|
{ |
|
"repo": "janekm/analog_film", |
|
"image": "https://huggingface.co/spaces/multimodalart/Qwen-Image-LoRA-Explorer/resolve/main/cat.webp", |
|
"trigger_word": "fifthel", |
|
"trigger_position": "prepend", |
|
"weights": "converted_complete.safetensors", |
|
"title": "Analog Film" |
|
}, |
|
{ |
|
"repo": "itspoidaman/qwenglitch", |
|
"image": "https://huggingface.co/itspoidaman/qwenglitch/resolve/main/images/GydaJ5LbEAAWKJU.jpeg", |
|
"trigger_word": "qwenglitch", |
|
"title": "Glitch" |
|
}, |
|
{ |
|
"repo": "alfredplpl/qwen-image-modern-anime-lora", |
|
"image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg", |
|
"trigger_word": "Japanese modern anime style, ", |
|
"trigger_position": "prepend", |
|
"title": "Modern Anime" |
|
}, |
|
{ |
|
"repo": "lichorosario/qwen-image-dottrmstr", |
|
"image": "https://huggingface.co/lichorosario/qwen-image-dottrmstr/resolve/main/images/Day_of_the_Tentacle_Remastered_(PC)_08.jpg", |
|
"trigger_word": "DOTTRMSTR", |
|
"trigger_position": "prepend", |
|
"title": "Day of the Tentacle Style" |
|
} |
|
] |
|
|
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
base_model = "OPPOer/Qwen-Image-Pruning" |
|
|
|
|
|
scheduler_config = { |
|
"base_image_seq_len": 256, |
|
"base_shift": math.log(3), |
|
"invert_sigmas": False, |
|
"max_image_seq_len": 8192, |
|
"max_shift": math.log(3), |
|
"num_train_timesteps": 1000, |
|
"shift": 1.0, |
|
"shift_terminal": None, |
|
"stochastic_sampling": False, |
|
"time_shift_type": "exponential", |
|
"use_beta_sigmas": False, |
|
"use_dynamic_shifting": True, |
|
"use_exponential_sigmas": False, |
|
"use_karras_sigmas": False, |
|
} |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) |
|
pipe = DiffusionPipeline.from_pretrained( |
|
base_model, |
|
scheduler=scheduler, |
|
torch_dtype=dtype |
|
).to(device) |
|
|
|
|
|
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning" |
|
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
class calculateDuration: |
|
def __init__(self, activity_name=""): |
|
self.activity_name = activity_name |
|
|
|
def __enter__(self): |
|
self.start_time = time.time() |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.end_time = time.time() |
|
self.elapsed_time = self.end_time - self.start_time |
|
if self.activity_name: |
|
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") |
|
else: |
|
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") |
|
|
|
def get_image_size(aspect_ratio): |
|
"""Converts aspect ratio string to width, height tuple.""" |
|
if aspect_ratio == "1:1": |
|
return 1024, 1024 |
|
elif aspect_ratio == "2:1": |
|
return 1280, 640 |
|
elif aspect_ratio == "16:9": |
|
return 1152, 640 |
|
elif aspect_ratio == "9:16": |
|
return 640, 1152 |
|
elif aspect_ratio == "4:3": |
|
return 1024, 768 |
|
elif aspect_ratio == "3:4": |
|
return 768, 1024 |
|
elif aspect_ratio == "3:2": |
|
return 1024, 688 |
|
elif aspect_ratio == "2:3": |
|
return 688, 1024 |
|
elif aspect_ratio == "3:1": |
|
return 1920, 640 |
|
elif aspect_ratio == "2:1": |
|
return 1280, 640 |
|
else: |
|
return 1024, 1024 |
|
|
|
def update_selection(evt: gr.SelectData, aspect_ratio): |
|
selected_lora = loras[evt.index] |
|
new_placeholder = f"Type a prompt for {selected_lora['title']}" |
|
lora_repo = selected_lora["repo"] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" |
|
|
|
|
|
if "aspect" in selected_lora: |
|
if selected_lora["aspect"] == "portrait": |
|
aspect_ratio = "9:16" |
|
elif selected_lora["aspect"] == "landscape": |
|
aspect_ratio = "16:9" |
|
else: |
|
aspect_ratio = "1:1" |
|
|
|
return ( |
|
gr.update(placeholder=new_placeholder), |
|
updated_text, |
|
evt.index, |
|
aspect_ratio, |
|
) |
|
|
|
def handle_speed_mode(speed_mode): |
|
"""Update UI based on speed/quality toggle.""" |
|
if speed_mode == "Speed (8 steps)": |
|
return gr.update(value="Speed mode selected - 8 steps with Lightning LoRA"), 8, 1.0 |
|
else: |
|
return gr.update(value="Prune mode selected - 8 steps"), 8, 1.0 |
|
|
|
@spaces.GPU(duration=70) |
|
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""): |
|
pipe.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
|
|
with calculateDuration("Generating image"): |
|
|
|
image = pipe( |
|
prompt=prompt_mash, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=steps, |
|
true_cfg_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image |
|
|
|
@spaces.GPU(duration=70) |
|
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)): |
|
if selected_index is None: |
|
raise gr.Error("You must select a LoRA before proceeding.") |
|
|
|
selected_lora = loras[selected_index] |
|
lora_path = selected_lora["repo"] |
|
trigger_word = selected_lora["trigger_word"] |
|
|
|
|
|
if trigger_word: |
|
if "trigger_position" in selected_lora: |
|
if selected_lora["trigger_position"] == "prepend": |
|
prompt_mash = f"{trigger_word} {prompt}" |
|
else: |
|
prompt_mash = f"{prompt} {trigger_word}" |
|
else: |
|
prompt_mash = f"{trigger_word} {prompt}" |
|
else: |
|
prompt_mash = prompt |
|
|
|
|
|
with calculateDuration("Unloading existing LoRAs"): |
|
pipe.unload_lora_weights() |
|
|
|
|
|
if speed_mode == "Speed (8 steps)": |
|
with calculateDuration("Loading Lightning LoRA and style LoRA"): |
|
|
|
pipe.load_lora_weights( |
|
LIGHTNING_LORA_REPO, |
|
weight_name=LIGHTNING_LORA_WEIGHT, |
|
adapter_name="lightning" |
|
) |
|
|
|
|
|
weight_name = selected_lora.get("weights", None) |
|
pipe.load_lora_weights( |
|
lora_path, |
|
weight_name=weight_name, |
|
low_cpu_mem_usage=True, |
|
adapter_name="style" |
|
) |
|
|
|
|
|
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale]) |
|
else: |
|
|
|
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): |
|
weight_name = selected_lora.get("weights", None) |
|
pipe.load_lora_weights( |
|
lora_path, |
|
weight_name=weight_name, |
|
low_cpu_mem_usage=True, |
|
adapter_name="style" |
|
) |
|
pipe.set_adapters(["style"], adapter_weights=[lora_scale]) |
|
|
|
|
|
with calculateDuration("Randomizing seed"): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
width, height = get_image_size(aspect_ratio) |
|
|
|
|
|
final_image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale) |
|
|
|
return final_image, seed |
|
|
|
def get_huggingface_safetensors(link): |
|
split_link = link.split("/") |
|
if len(split_link) != 2: |
|
raise Exception("Invalid Hugging Face repository link format.") |
|
|
|
print(f"Repository attempted: {split_link}") |
|
|
|
|
|
model_card = ModelCard.load(link) |
|
base_model = model_card.data.get("base_model") |
|
print(f"Base model: {base_model}") |
|
|
|
|
|
acceptable_models = {"Qwen/Qwen-Image"} |
|
|
|
models_to_check = base_model if isinstance(base_model, list) else [base_model] |
|
|
|
if not any(model in acceptable_models for model in models_to_check): |
|
raise Exception("Not a Qwen-Image LoRA!") |
|
|
|
|
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None |
|
|
|
|
|
fs = HfFileSystem() |
|
try: |
|
list_of_files = fs.ls(link, detail=False) |
|
|
|
|
|
safetensors_name = None |
|
for file in list_of_files: |
|
filename = file.split("/")[-1] |
|
if filename.endswith(".safetensors"): |
|
safetensors_name = filename |
|
break |
|
|
|
if not safetensors_name: |
|
raise Exception("No valid *.safetensors file found in the repository.") |
|
|
|
except Exception as e: |
|
print(e) |
|
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA") |
|
|
|
return split_link[1], link, safetensors_name, trigger_word, image_url |
|
|
|
def check_custom_model(link): |
|
print(f"Checking a custom model on: {link}") |
|
|
|
if link.endswith('.safetensors'): |
|
if 'huggingface.co' in link: |
|
parts = link.split('/') |
|
try: |
|
hf_index = parts.index('huggingface.co') |
|
username = parts[hf_index + 1] |
|
repo_name = parts[hf_index + 2] |
|
repo = f"{username}/{repo_name}" |
|
|
|
safetensors_name = parts[-1] |
|
|
|
try: |
|
model_card = ModelCard.load(repo) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None |
|
except: |
|
trigger_word = "" |
|
image_url = None |
|
|
|
return repo_name, repo, safetensors_name, trigger_word, image_url |
|
except: |
|
raise Exception("Invalid safetensors URL format") |
|
|
|
if link.startswith("https://"): |
|
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): |
|
link_split = link.split("huggingface.co/") |
|
return get_huggingface_safetensors(link_split[1]) |
|
else: |
|
return get_huggingface_safetensors(link) |
|
|
|
def add_custom_lora(custom_lora): |
|
global loras |
|
if custom_lora: |
|
try: |
|
title, repo, path, trigger_word, image = check_custom_model(custom_lora) |
|
print(f"Loaded custom LoRA: {repo}") |
|
card = f''' |
|
<div class="custom_lora_card"> |
|
<span>Loaded custom LoRA:</span> |
|
<div class="card_internal"> |
|
<img src="{image}" /> |
|
<div> |
|
<h3>{title}</h3> |
|
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> |
|
</div> |
|
</div> |
|
</div> |
|
''' |
|
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) |
|
if existing_item_index is None: |
|
new_item = { |
|
"image": image, |
|
"title": title, |
|
"repo": repo, |
|
"weights": path, |
|
"trigger_word": trigger_word |
|
} |
|
print(new_item) |
|
loras.append(new_item) |
|
existing_item_index = len(loras) - 1 |
|
|
|
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word |
|
except Exception as e: |
|
full_traceback = traceback.format_exc() |
|
print(f"Full traceback:\n{full_traceback}") |
|
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}") |
|
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, "" |
|
else: |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
def remove_custom_lora(): |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
run_lora.zerogpu = True |
|
|
|
css = ''' |
|
#gen_btn{height: 100%} |
|
#gen_column{align-self: stretch} |
|
#title{text-align: center} |
|
#title h1{font-size: 3em; display:inline-flex; align-items:center} |
|
#title img{width: 100px; margin-right: 0.5em} |
|
#gallery .grid-wrap{height: 10vh} |
|
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} |
|
.card_internal{display: flex;height: 100px;margin-top: .5em} |
|
.card_internal img{margin-right: 1em} |
|
.styler{--form-gap-width: 0px !important} |
|
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0} |
|
''' |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app: |
|
title = gr.HTML( |
|
""" |
|
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image" style="width: 280px; margin: 0 auto"> |
|
<h3 style="margin-top: -10px">Prune LoRA Explorer</h3>""", |
|
elem_id="title", |
|
) |
|
|
|
selected_index = gr.State(None) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") |
|
with gr.Column(scale=1, elem_id="gen_column"): |
|
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
selected_info = gr.Markdown("") |
|
gallery = gr.Gallery( |
|
[(item["image"], item["title"]) for item in loras], |
|
label="LoRA Gallery", |
|
allow_preview=False, |
|
columns=3, |
|
elem_id="gallery", |
|
show_share_button=False |
|
) |
|
with gr.Group(): |
|
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora") |
|
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list") |
|
custom_lora_info = gr.HTML(visible=False) |
|
custom_lora_button = gr.Button("Remove custom LoRA", visible=False) |
|
|
|
with gr.Column(): |
|
result = gr.Image(label="Generated Image") |
|
|
|
with gr.Row(): |
|
speed_mode = gr.Radio( |
|
label="Generation Mode", |
|
choices=["Speed (8 steps)", "Prune (8 steps)"], |
|
value="Prune (8 steps)", |
|
info="Speed mode uses Lightning LoRA for faster generation" |
|
) |
|
|
|
speed_status = gr.Markdown("Quality mode active", elem_id="speed_status") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Column(): |
|
with gr.Row(): |
|
aspect_ratio = gr.Radio( |
|
label="Aspect Ratio", |
|
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3", "3:1", "2:1"], |
|
value="16:9" |
|
) |
|
|
|
with gr.Row(): |
|
cfg_scale = gr.Slider( |
|
label="Guidance Scale (True CFG)", |
|
minimum=1.0, |
|
maximum=5.0, |
|
step=0.1, |
|
value=1, |
|
info="Lower for speed mode, higher for quality" |
|
) |
|
steps = gr.Slider( |
|
label="Steps", |
|
minimum=4, |
|
maximum=50, |
|
step=1, |
|
value=8, |
|
info="Automatically set by speed mode" |
|
) |
|
|
|
with gr.Row(): |
|
randomize_seed = gr.Checkbox(True, label="Randomize seed") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) |
|
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=1.0) |
|
|
|
|
|
gallery.select( |
|
update_selection, |
|
inputs=[aspect_ratio], |
|
outputs=[prompt, selected_info, selected_index, aspect_ratio] |
|
) |
|
|
|
speed_mode.change( |
|
handle_speed_mode, |
|
inputs=[speed_mode], |
|
outputs=[speed_status, steps, cfg_scale] |
|
) |
|
|
|
custom_lora.input( |
|
add_custom_lora, |
|
inputs=[custom_lora], |
|
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] |
|
) |
|
|
|
custom_lora_button.click( |
|
remove_custom_lora, |
|
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] |
|
) |
|
|
|
gr.on( |
|
triggers=[generate_button.click, prompt.submit], |
|
fn=run_lora, |
|
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode], |
|
outputs=[result, seed] |
|
) |
|
|
|
default_index = next( |
|
i for i, l in enumerate(loras) |
|
if l["repo"] == "lichorosario/qwen-image-dottrmstr" |
|
) |
|
|
|
app.load( |
|
fn=lambda: ( |
|
gr.update(value="Prune (8 steps)"), |
|
gr.update(value="3:1"), |
|
gr.update(value=default_index), |
|
gr.update(selected_index=default_index), |
|
gr.update(value=2.5) |
|
), |
|
inputs=[], |
|
outputs=[speed_mode, aspect_ratio, selected_index, gallery, lora_scale] |
|
) |
|
|
|
app.queue() |
|
app.launch() |