|
""" |
|
""" |
|
|
|
from typing import Any |
|
from typing import Callable |
|
from typing import ParamSpec |
|
|
|
import spaces |
|
import torch |
|
from torch.utils._pytree import tree_map_only |
|
from torchao.quantization import quantize_ |
|
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig |
|
from torchao.quantization import Int8WeightOnlyConfig |
|
|
|
from optimization_utils import capture_component_call |
|
from optimization_utils import aoti_compile |
|
from optimization_utils import drain_module_parameters |
|
|
|
|
|
P = ParamSpec('P') |
|
|
|
|
|
|
|
|
|
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52) |
|
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52) |
|
|
|
|
|
|
|
TRANSFORMER_DYNAMIC_SHAPES = { |
|
'hidden_states': { |
|
2: LATENT_FRAMES_DIM, |
|
3: 2 * LATENT_PATCHED_HEIGHT_DIM, |
|
4: 2 * LATENT_PATCHED_WIDTH_DIM, |
|
}, |
|
} |
|
|
|
|
|
|
|
|
|
INDUCTOR_CONFIGS = { |
|
'conv_1x1_as_mm': True, |
|
'epilogue_fusion': False, |
|
'coordinate_descent_tuning': True, |
|
'coordinate_descent_check_all_directions': True, |
|
'max_autotune': True, |
|
'triton.cudagraphs': True, |
|
} |
|
|
|
|
|
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): |
|
|
|
@spaces.GPU(duration=1500) |
|
def compile_transformer(): |
|
|
|
|
|
pipeline.load_lora_weights( |
|
"Kijai/WanVideo_comfy", |
|
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", |
|
adapter_name="lightx2v" |
|
) |
|
kwargs_lora = {} |
|
kwargs_lora["load_into_transformer_2"] = True |
|
pipeline.load_lora_weights( |
|
"Kijai/WanVideo_comfy", |
|
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", |
|
adapter_name="lightx2v_2", **kwargs_lora |
|
) |
|
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.]) |
|
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"]) |
|
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"]) |
|
pipeline.unload_lora_weights() |
|
|
|
|
|
with capture_component_call(pipeline, 'transformer') as call: |
|
pipeline(*args, **kwargs) |
|
|
|
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) |
|
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES |
|
|
|
|
|
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) |
|
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig()) |
|
|
|
|
|
|
|
exported_1 = torch.export.export( |
|
mod=pipeline.transformer, |
|
args=call.args, |
|
kwargs=call.kwargs, |
|
dynamic_shapes=dynamic_shapes, |
|
) |
|
|
|
exported_2 = torch.export.export( |
|
mod=pipeline.transformer_2, |
|
args=call.args, |
|
kwargs=call.kwargs, |
|
dynamic_shapes=dynamic_shapes, |
|
) |
|
|
|
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS) |
|
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS) |
|
|
|
|
|
return compiled_1, compiled_2 |
|
|
|
|
|
|
|
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig()) |
|
|
|
|
|
compiled_transformer_1, compiled_transformer_2 = compile_transformer() |
|
|
|
|
|
|
|
pipeline.transformer.forward = compiled_transformer_1 |
|
drain_module_parameters(pipeline.transformer) |
|
|
|
pipeline.transformer_2.forward = compiled_transformer_2 |
|
drain_module_parameters(pipeline.transformer_2) |