rahul7star's picture
Update app.py
8dfdf4d verified
import os
import shutil
import random
import sys
import tempfile
from typing import Sequence, Mapping, Any, Union
import spaces
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download
from comfy import model_management
def hf_hub_download_local(repo_id, filename, local_dir, **kwargs):
downloaded_path = hf_hub_download(repo_id=repo_id, filename=filename, **kwargs)
os.makedirs(local_dir, exist_ok=True)
base_filename = os.path.basename(filename)
target_path = os.path.join(local_dir, base_filename)
if os.path.exists(target_path) or os.path.islink(target_path):
os.remove(target_path)
os.symlink(downloaded_path, target_path)
return target_path
# --- Model Downloads ---
print("Downloading models from Hugging Face Hub...")
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors", local_dir="models/text_encoders")
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors", local_dir="models/unet")
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors", local_dir="models/unet")
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/vae/wan_2.1_vae.safetensors", local_dir="models/vae")
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/clip_vision/clip_vision_h.safetensors", local_dir="models/clip_vision")
hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors", local_dir="models/loras")
hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", local_dir="models/loras")
print("Downloads complete.")
model_management.vram_state = model_management.VRAMState.HIGH_VRAM
# --- Image Processing Functions ---
def calculate_video_dimensions(width, height, max_size=832, min_size=480):
"""
Calculate video dimensions based on input image size.
Larger dimension becomes max_size, smaller becomes proportional.
If square, use min_size x min_size.
Results are rounded to nearest multiple of 16.
"""
# Handle square images
if width == height:
video_width = min_size
video_height = min_size
else:
# Calculate aspect ratio
aspect_ratio = width / height
if width > height:
# Landscape orientation
video_width = max_size
video_height = int(max_size / aspect_ratio)
else:
# Portrait orientation
video_height = max_size
video_width = int(max_size * aspect_ratio)
# Round to nearest multiple of 16
video_width = round(video_width / 16) * 16
video_height = round(video_height / 16) * 16
# Ensure minimum size
video_width = max(video_width, 16)
video_height = max(video_height, 16)
return video_width, video_height
def resize_and_crop_to_match(target_image, reference_image):
"""
Resize and center crop target_image to match reference_image dimensions.
"""
ref_width, ref_height = reference_image.size
target_width, target_height = target_image.size
# Calculate scaling factor to ensure target covers reference dimensions
scale = max(ref_width / target_width, ref_height / target_height)
# Resize target image
new_width = int(target_width * scale)
new_height = int(target_height * scale)
resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Center crop to match reference dimensions
left = (new_width - ref_width) // 2
top = (new_height - ref_height) // 2
right = left + ref_width
bottom = top + ref_height
cropped = resized.crop((left, top, right, bottom))
return cropped
# --- Boilerplate code from the original script ---
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
# This is a fallback for custom node outputs that might be dictionaries
if isinstance(obj, Mapping) and "result" in obj:
return obj["result"][index]
raise
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"'{name}' found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
else:
print("Could not find ComfyUI directory. Please run from a parent folder of ComfyUI.")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. This might be okay if you don't use it."
)
return
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find an optional 'extra_model_paths.yaml' config file.")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
loop.run_until_complete(init_extra_nodes(init_custom_nodes=True))
# --- Model Loading and Caching ---
MODELS_AND_NODES = {}
print("Setting up ComfyUI paths...")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
print("Importing custom nodes...")
import_custom_nodes()
# Now that paths are set up, we can import from nodes
from nodes import NODE_CLASS_MAPPINGS
global folder_paths # Make folder_paths globally accessible
import folder_paths
print("Loading models into memory. This may take a few minutes...")
# Load Text-to-Image models (CLIP, UNETs, VAE)
cliploader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
MODELS_AND_NODES["clip"] = cliploader.load_clip(
clip_name="umt5_xxl_fp8_e4m3fn_scaled.safetensors", type="wan", device="cpu"
)
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unet_low_noise = unetloader.load_unet(
unet_name="wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors",
weight_dtype="default",
)
unet_high_noise = unetloader.load_unet(
unet_name="wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors",
weight_dtype="default",
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
MODELS_AND_NODES["vae"] = vaeloader.load_vae(vae_name="wan_2.1_vae.safetensors")
# Load LoRAs
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
MODELS_AND_NODES["model_low_noise"] = loraloadermodelonly.load_lora_model_only(
lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors",
strength_model=0.8,
model=get_value_at_index(unet_low_noise, 0),
)
MODELS_AND_NODES["model_high_noise"] = loraloadermodelonly.load_lora_model_only(
lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors",
strength_model=0.8,
model=get_value_at_index(unet_high_noise, 0),
)
# Load Vision model
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
MODELS_AND_NODES["clip_vision"] = clipvisionloader.load_clip(
clip_name="clip_vision_h.safetensors"
)
# Instantiate all required node classes
MODELS_AND_NODES["CLIPTextEncode"] = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
MODELS_AND_NODES["LoadImage"] = NODE_CLASS_MAPPINGS["LoadImage"]()
MODELS_AND_NODES["CLIPVisionEncode"] = NODE_CLASS_MAPPINGS["CLIPVisionEncode"]()
MODELS_AND_NODES["ModelSamplingSD3"] = NODE_CLASS_MAPPINGS["ModelSamplingSD3"]()
MODELS_AND_NODES["PathchSageAttentionKJ"] = NODE_CLASS_MAPPINGS["PathchSageAttentionKJ"]()
MODELS_AND_NODES["WanFirstLastFrameToVideo"] = NODE_CLASS_MAPPINGS["WanFirstLastFrameToVideo"]()
MODELS_AND_NODES["KSamplerAdvanced"] = NODE_CLASS_MAPPINGS["KSamplerAdvanced"]()
MODELS_AND_NODES["VAEDecode"] = NODE_CLASS_MAPPINGS["VAEDecode"]()
MODELS_AND_NODES["CreateVideo"] = NODE_CLASS_MAPPINGS["CreateVideo"]()
MODELS_AND_NODES["SaveVideo"] = NODE_CLASS_MAPPINGS["SaveVideo"]()
print("Pre-loading main models onto GPU...")
model_loaders = [
MODELS_AND_NODES["clip"],
MODELS_AND_NODES["vae"],
MODELS_AND_NODES["model_low_noise"], # This is the UNET + LoRA
MODELS_AND_NODES["model_high_noise"], # This is the other UNET + LoRA
MODELS_AND_NODES["clip_vision"],
]
model_management.load_models_gpu([
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
])
print("All models loaded successfully!")
# --- Main Video Generation Logic ---
@spaces.GPU(duration=120)
def generate_video(
start_image_pil,
end_image_pil,
prompt,
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
duration=33,
progress=gr.Progress(track_tqdm=True)
):
"""
The main function to generate a video based on user inputs.
This function is called every time the user clicks the 'Generate' button.
"""
FPS = 16
# Process images: resize and crop second image to match first
# The first image determines the dimensions
processed_start_image = start_image_pil.copy()
processed_end_image = resize_and_crop_to_match(end_image_pil, start_image_pil)
# Calculate video dimensions based on the first image
video_width, video_height = calculate_video_dimensions(
processed_start_image.width,
processed_start_image.height
)
print(f"Input image size: {processed_start_image.width}x{processed_start_image.height}")
print(f"Video dimensions: {video_width}x{video_height}")
clip = MODELS_AND_NODES["clip"]
vae = MODELS_AND_NODES["vae"]
model_low_noise = MODELS_AND_NODES["model_low_noise"]
model_high_noise = MODELS_AND_NODES["model_high_noise"]
clip_vision = MODELS_AND_NODES["clip_vision"]
cliptextencode = MODELS_AND_NODES["CLIPTextEncode"]
loadimage = MODELS_AND_NODES["LoadImage"]
clipvisionencode = MODELS_AND_NODES["CLIPVisionEncode"]
modelsamplingsd3 = MODELS_AND_NODES["ModelSamplingSD3"]
pathchsageattentionkj = MODELS_AND_NODES["PathchSageAttentionKJ"]
wanfirstlastframetovideo = MODELS_AND_NODES["WanFirstLastFrameToVideo"]
ksampleradvanced = MODELS_AND_NODES["KSamplerAdvanced"]
vaedecode = MODELS_AND_NODES["VAEDecode"]
createvideo = MODELS_AND_NODES["CreateVideo"]
savevideo = MODELS_AND_NODES["SaveVideo"]
# Save processed images to temporary files
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as start_file, \
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as end_file:
processed_start_image.save(start_file.name)
processed_end_image.save(end_file.name)
start_image_path = start_file.name
end_image_path = end_file.name
with torch.inference_mode():
progress(0.1, desc="Encoding text and images...")
# --- Workflow execution ---
positive_conditioning = cliptextencode.encode(text=prompt, clip=get_value_at_index(clip, 0))
negative_conditioning = cliptextencode.encode(text=negative_prompt, clip=get_value_at_index(clip, 0))
start_image_loaded = loadimage.load_image(image=start_image_path)
end_image_loaded = loadimage.load_image(image=end_image_path)
clip_vision_encoded_start = clipvisionencode.encode(
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(start_image_loaded, 0)
)
clip_vision_encoded_end = clipvisionencode.encode(
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(end_image_loaded, 0)
)
progress(0.2, desc="Preparing initial latents...")
initial_latents = wanfirstlastframetovideo.EXECUTE_NORMALIZED(
width=video_width, height=video_height, length=duration, batch_size=1,
positive=get_value_at_index(positive_conditioning, 0),
negative=get_value_at_index(negative_conditioning, 0),
vae=get_value_at_index(vae, 0),
clip_vision_start_image=get_value_at_index(clip_vision_encoded_start, 0),
clip_vision_end_image=get_value_at_index(clip_vision_encoded_end, 0),
start_image=get_value_at_index(start_image_loaded, 0),
end_image=get_value_at_index(end_image_loaded, 0),
)
progress(0.3, desc="Patching models...")
model_low_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_low_noise, 0))
model_low_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_low_patched, 0))
model_high_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_high_noise, 0))
model_high_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_high_patched, 0))
progress(0.5, desc="Running KSampler (Step 1/2)...")
latent_step1 = ksampleradvanced.sample(
add_noise="enable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
sampler_name="euler", scheduler="simple", start_at_step=0, end_at_step=4,
return_with_leftover_noise="enable", model=get_value_at_index(model_high_final, 0),
positive=get_value_at_index(initial_latents, 0),
negative=get_value_at_index(initial_latents, 1),
latent_image=get_value_at_index(initial_latents, 2),
)
progress(0.7, desc="Running KSampler (Step 2/2)...")
latent_step2 = ksampleradvanced.sample(
add_noise="disable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
sampler_name="euler", scheduler="simple", start_at_step=4, end_at_step=10000,
return_with_leftover_noise="disable", model=get_value_at_index(model_low_final, 0),
positive=get_value_at_index(initial_latents, 0),
negative=get_value_at_index(initial_latents, 1),
latent_image=get_value_at_index(latent_step1, 0),
)
progress(0.8, desc="Decoding VAE...")
decoded_images = vaedecode.decode(samples=get_value_at_index(latent_step2, 0), vae=get_value_at_index(vae, 0))
progress(0.9, desc="Creating and saving video...")
video_data = createvideo.create_video(fps=FPS, images=get_value_at_index(decoded_images, 0))
# Save the video to ComfyUI's output directory
save_result = savevideo.save_video(
filename_prefix="GradioVideo", format="mp4", codec="h264",
video=get_value_at_index(video_data, 0),
)
progress(1.0, desc="Done!")
return f"output/{save_result['ui']['images'][0]['filename']}"
css = '''
.fillable{max-width: 1100px !important}
.dark .progress-text {color: white}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
gr.Markdown("Running the [Wan 2.2 First/Last Frame ComfyUI workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/) and the [lightx2v/Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 8-step LoRA on ZeroGPU")
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Row():
start_image = gr.Image(type="pil", label="Start Frame")
end_image = gr.Image(type="pil", label="End Frame")
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
with gr.Accordion("Advanced Settings", open=False, visible=True):
duration = gr.Radio(
[("Short (2s)", 33), ("Mid (4s)", 66)],
value=33,
label="Video Duration",
visible=False
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
visible=False
)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
output_video = gr.Video(label="Generated Video", autoplay=True)
generate_button.click(
fn=generate_video,
inputs=[start_image, end_image, prompt, negative_prompt, duration],
outputs=output_video
)
gr.Examples(
examples=[
["poli_tower.png", "tower_takes_off.png", "the man turns around"],
["ugly_sonic.jpeg", "squatting_sonic.png", "the character dodges the missiles"],
["capyabara_zoomed.png", "capybara.webp", "a dramatic dolly zoom"],
],
inputs=[start_image, end_image, prompt],
outputs=output_video,
fn=generate_video,
cache_examples="lazy",
)
if __name__ == "__main__":
app.launch(share=True)