|
import torch |
|
import torch.nn as nn |
|
from comfy.ldm.modules.attention import optimized_attention_masked |
|
|
|
|
|
class LayerNormConv(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype) |
|
self.layer_norm = operations.LayerNorm(out_channels, elementwise_affine=True, device=device, dtype=dtype) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
return torch.nn.functional.gelu(self.layer_norm(x.transpose(-2, -1)).transpose(-2, -1)) |
|
|
|
|
|
class ConvFeatureEncoder(nn.Module): |
|
def __init__(self, conv_dim, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.conv_layers = nn.ModuleList([ |
|
LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations), |
|
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations), |
|
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations), |
|
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations), |
|
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations), |
|
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations), |
|
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations), |
|
]) |
|
|
|
def forward(self, x): |
|
x = x.unsqueeze(1) |
|
|
|
for conv in self.conv_layers: |
|
x = conv(x) |
|
|
|
return x.transpose(1, 2) |
|
|
|
|
|
class FeatureProjection(nn.Module): |
|
def __init__(self, conv_dim, embed_dim, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.layer_norm = operations.LayerNorm(conv_dim, eps=1e-05, device=device, dtype=dtype) |
|
self.projection = operations.Linear(conv_dim, embed_dim, device=device, dtype=dtype) |
|
|
|
def forward(self, x): |
|
x = self.layer_norm(x) |
|
x = self.projection(x) |
|
return x |
|
|
|
|
|
class PositionalConvEmbedding(nn.Module): |
|
def __init__(self, embed_dim=768, kernel_size=128, groups=16): |
|
super().__init__() |
|
self.conv = nn.Conv1d( |
|
embed_dim, |
|
embed_dim, |
|
kernel_size=kernel_size, |
|
padding=kernel_size // 2, |
|
groups=groups, |
|
) |
|
self.conv = torch.nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2) |
|
self.activation = nn.GELU() |
|
|
|
def forward(self, x): |
|
x = x.transpose(1, 2) |
|
x = self.conv(x)[:, :, :-1] |
|
x = self.activation(x) |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
|
|
class TransformerEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim=768, |
|
num_heads=12, |
|
num_layers=12, |
|
mlp_ratio=4.0, |
|
dtype=None, device=None, operations=None |
|
): |
|
super().__init__() |
|
|
|
self.pos_conv_embed = PositionalConvEmbedding(embed_dim=embed_dim) |
|
self.layers = nn.ModuleList([ |
|
TransformerEncoderLayer( |
|
embed_dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
device=device, dtype=dtype, operations=operations |
|
) |
|
for _ in range(num_layers) |
|
]) |
|
|
|
self.layer_norm = operations.LayerNorm(embed_dim, eps=1e-05, device=device, dtype=dtype) |
|
|
|
def forward(self, x, mask=None): |
|
x = x + self.pos_conv_embed(x) |
|
all_x = () |
|
for layer in self.layers: |
|
all_x += (x,) |
|
x = layer(x, mask) |
|
x = self.layer_norm(x) |
|
all_x += (x,) |
|
return x, all_x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, embed_dim, num_heads, bias=True, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
|
|
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) |
|
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) |
|
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) |
|
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) |
|
|
|
def forward(self, x, mask=None): |
|
assert (mask is None) |
|
q = self.q_proj(x) |
|
k = self.k_proj(x) |
|
v = self.v_proj(x) |
|
|
|
out = optimized_attention_masked(q, k, v, self.num_heads) |
|
return self.out_proj(out) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, embed_dim, mlp_ratio, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.intermediate_dense = operations.Linear(embed_dim, int(embed_dim * mlp_ratio), device=device, dtype=dtype) |
|
self.output_dense = operations.Linear(int(embed_dim * mlp_ratio), embed_dim, device=device, dtype=dtype) |
|
|
|
def forward(self, x): |
|
x = self.intermediate_dense(x) |
|
x = torch.nn.functional.gelu(x) |
|
x = self.output_dense(x) |
|
return x |
|
|
|
|
|
class TransformerEncoderLayer(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim=768, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
dtype=None, device=None, operations=None |
|
): |
|
super().__init__() |
|
|
|
self.attention = Attention(embed_dim, num_heads, device=device, dtype=dtype, operations=operations) |
|
|
|
self.layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype) |
|
self.feed_forward = FeedForward(embed_dim, mlp_ratio, device=device, dtype=dtype, operations=operations) |
|
self.final_layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype) |
|
|
|
def forward(self, x, mask=None): |
|
residual = x |
|
x = self.layer_norm(x) |
|
x = self.attention(x, mask=mask) |
|
x = residual + x |
|
|
|
x = x + self.feed_forward(self.final_layer_norm(x)) |
|
return x |
|
|
|
|
|
class Wav2Vec2Model(nn.Module): |
|
"""Complete Wav2Vec 2.0 model.""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim=1024, |
|
final_dim=256, |
|
num_heads=16, |
|
num_layers=24, |
|
dtype=None, device=None, operations=None |
|
): |
|
super().__init__() |
|
|
|
conv_dim = 512 |
|
self.feature_extractor = ConvFeatureEncoder(conv_dim, device=device, dtype=dtype, operations=operations) |
|
self.feature_projection = FeatureProjection(conv_dim, embed_dim, device=device, dtype=dtype, operations=operations) |
|
|
|
self.masked_spec_embed = nn.Parameter(torch.empty(embed_dim, device=device, dtype=dtype)) |
|
|
|
self.encoder = TransformerEncoder( |
|
embed_dim=embed_dim, |
|
num_heads=num_heads, |
|
num_layers=num_layers, |
|
device=device, dtype=dtype, operations=operations |
|
) |
|
|
|
def forward(self, x, mask_time_indices=None, return_dict=False): |
|
|
|
x = torch.mean(x, dim=1) |
|
|
|
x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7) |
|
|
|
features = self.feature_extractor(x) |
|
features = self.feature_projection(features) |
|
|
|
batch_size, seq_len, _ = features.shape |
|
|
|
x, all_x = self.encoder(features) |
|
|
|
return x, all_x |
|
|