|
""" |
|
This file is part of ComfyUI. |
|
Copyright (C) 2024 Comfy |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <https://www.gnu.org/licenses/>. |
|
""" |
|
|
|
from __future__ import annotations |
|
import comfy.utils |
|
import comfy.model_management |
|
import comfy.model_base |
|
import comfy.weight_adapter as weight_adapter |
|
import logging |
|
import torch |
|
|
|
LORA_CLIP_MAP = { |
|
"mlp.fc1": "mlp_fc1", |
|
"mlp.fc2": "mlp_fc2", |
|
"self_attn.k_proj": "self_attn_k_proj", |
|
"self_attn.q_proj": "self_attn_q_proj", |
|
"self_attn.v_proj": "self_attn_v_proj", |
|
"self_attn.out_proj": "self_attn_out_proj", |
|
} |
|
|
|
|
|
def load_lora(lora, to_load, log_missing=True): |
|
patch_dict = {} |
|
loaded_keys = set() |
|
for x in to_load: |
|
alpha_name = "{}.alpha".format(x) |
|
alpha = None |
|
if alpha_name in lora.keys(): |
|
alpha = lora[alpha_name].item() |
|
loaded_keys.add(alpha_name) |
|
|
|
dora_scale_name = "{}.dora_scale".format(x) |
|
dora_scale = None |
|
if dora_scale_name in lora.keys(): |
|
dora_scale = lora[dora_scale_name] |
|
loaded_keys.add(dora_scale_name) |
|
|
|
for adapter_cls in weight_adapter.adapters: |
|
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys) |
|
if adapter is not None: |
|
patch_dict[to_load[x]] = adapter |
|
loaded_keys.update(adapter.loaded_keys) |
|
continue |
|
|
|
w_norm_name = "{}.w_norm".format(x) |
|
b_norm_name = "{}.b_norm".format(x) |
|
w_norm = lora.get(w_norm_name, None) |
|
b_norm = lora.get(b_norm_name, None) |
|
|
|
if w_norm is not None: |
|
loaded_keys.add(w_norm_name) |
|
patch_dict[to_load[x]] = ("diff", (w_norm,)) |
|
if b_norm is not None: |
|
loaded_keys.add(b_norm_name) |
|
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,)) |
|
|
|
diff_name = "{}.diff".format(x) |
|
diff_weight = lora.get(diff_name, None) |
|
if diff_weight is not None: |
|
patch_dict[to_load[x]] = ("diff", (diff_weight,)) |
|
loaded_keys.add(diff_name) |
|
|
|
diff_bias_name = "{}.diff_b".format(x) |
|
diff_bias = lora.get(diff_bias_name, None) |
|
if diff_bias is not None: |
|
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,)) |
|
loaded_keys.add(diff_bias_name) |
|
|
|
set_weight_name = "{}.set_weight".format(x) |
|
set_weight = lora.get(set_weight_name, None) |
|
if set_weight is not None: |
|
patch_dict[to_load[x]] = ("set", (set_weight,)) |
|
loaded_keys.add(set_weight_name) |
|
|
|
if log_missing: |
|
for x in lora.keys(): |
|
if x not in loaded_keys: |
|
logging.warning("lora key not loaded: {}".format(x)) |
|
|
|
return patch_dict |
|
|
|
def model_lora_keys_clip(model, key_map={}): |
|
sdk = model.state_dict().keys() |
|
for k in sdk: |
|
if k.endswith(".weight"): |
|
key_map["text_encoders.{}".format(k[:-len(".weight")])] = k |
|
|
|
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" |
|
clip_l_present = False |
|
clip_g_present = False |
|
for b in range(32): |
|
for c in LORA_CLIP_MAP: |
|
k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) |
|
if k in sdk: |
|
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) |
|
key_map[lora_key] = k |
|
|
|
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) |
|
if k in sdk: |
|
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
clip_l_present = True |
|
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) |
|
key_map[lora_key] = k |
|
|
|
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) |
|
if k in sdk: |
|
clip_g_present = True |
|
if clip_l_present: |
|
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) |
|
key_map[lora_key] = k |
|
else: |
|
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) |
|
key_map[lora_key] = k |
|
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
|
|
for k in sdk: |
|
if k.endswith(".weight"): |
|
if k.startswith("t5xxl.transformer."): |
|
l_key = k[len("t5xxl.transformer."):-len(".weight")] |
|
t5_index = 1 |
|
if clip_g_present: |
|
t5_index += 1 |
|
if clip_l_present: |
|
t5_index += 1 |
|
if t5_index == 2: |
|
key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k |
|
t5_index += 1 |
|
|
|
key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k |
|
elif k.startswith("hydit_clip.transformer.bert."): |
|
l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")] |
|
lora_key = "lora_te1_{}".format(l_key.replace(".", "_")) |
|
key_map[lora_key] = k |
|
|
|
|
|
k = "clip_g.transformer.text_projection.weight" |
|
if k in sdk: |
|
key_map["lora_prior_te_text_projection"] = k |
|
|
|
key_map["lora_te2_text_projection"] = k |
|
|
|
k = "clip_l.transformer.text_projection.weight" |
|
if k in sdk: |
|
key_map["lora_te1_text_projection"] = k |
|
|
|
return key_map |
|
|
|
def model_lora_keys_unet(model, key_map={}): |
|
sd = model.state_dict() |
|
sdk = sd.keys() |
|
|
|
for k in sdk: |
|
if k.startswith("diffusion_model."): |
|
if k.endswith(".weight"): |
|
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") |
|
key_map["lora_unet_{}".format(key_lora)] = k |
|
key_map["{}".format(k[:-len(".weight")])] = k |
|
else: |
|
key_map["{}".format(k)] = k |
|
|
|
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config) |
|
for k in diffusers_keys: |
|
if k.endswith(".weight"): |
|
unet_key = "diffusion_model.{}".format(diffusers_keys[k]) |
|
key_lora = k[:-len(".weight")].replace(".", "_") |
|
key_map["lora_unet_{}".format(key_lora)] = unet_key |
|
key_map["lycoris_{}".format(key_lora)] = unet_key |
|
|
|
diffusers_lora_prefix = ["", "unet."] |
|
for p in diffusers_lora_prefix: |
|
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_")) |
|
if diffusers_lora_key.endswith(".to_out.0"): |
|
diffusers_lora_key = diffusers_lora_key[:-2] |
|
key_map[diffusers_lora_key] = unet_key |
|
|
|
if isinstance(model, comfy.model_base.StableCascade_C): |
|
for k in sdk: |
|
if k.startswith("diffusion_model."): |
|
if k.endswith(".weight"): |
|
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") |
|
key_map["lora_prior_unet_{}".format(key_lora)] = k |
|
|
|
if isinstance(model, comfy.model_base.SD3): |
|
diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") |
|
for k in diffusers_keys: |
|
if k.endswith(".weight"): |
|
to = diffusers_keys[k] |
|
key_lora = "transformer.{}".format(k[:-len(".weight")]) |
|
key_map[key_lora] = to |
|
|
|
key_lora = "base_model.model.{}".format(k[:-len(".weight")]) |
|
key_map[key_lora] = to |
|
|
|
key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) |
|
key_map[key_lora] = to |
|
|
|
key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) |
|
key_map[key_lora] = to |
|
|
|
if isinstance(model, comfy.model_base.AuraFlow): |
|
diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") |
|
for k in diffusers_keys: |
|
if k.endswith(".weight"): |
|
to = diffusers_keys[k] |
|
key_lora = "transformer.{}".format(k[:-len(".weight")]) |
|
key_map[key_lora] = to |
|
|
|
if isinstance(model, comfy.model_base.PixArt): |
|
diffusers_keys = comfy.utils.pixart_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") |
|
for k in diffusers_keys: |
|
if k.endswith(".weight"): |
|
to = diffusers_keys[k] |
|
key_lora = "transformer.{}".format(k[:-len(".weight")]) |
|
key_map[key_lora] = to |
|
|
|
key_lora = "base_model.model.{}".format(k[:-len(".weight")]) |
|
key_map[key_lora] = to |
|
|
|
key_lora = "unet.base_model.model.{}".format(k[:-len(".weight")]) |
|
key_map[key_lora] = to |
|
|
|
if isinstance(model, comfy.model_base.HunyuanDiT): |
|
for k in sdk: |
|
if k.startswith("diffusion_model.") and k.endswith(".weight"): |
|
key_lora = k[len("diffusion_model."):-len(".weight")] |
|
key_map["base_model.model.{}".format(key_lora)] = k |
|
|
|
if isinstance(model, comfy.model_base.Flux): |
|
diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") |
|
for k in diffusers_keys: |
|
if k.endswith(".weight"): |
|
to = diffusers_keys[k] |
|
key_map["transformer.{}".format(k[:-len(".weight")])] = to |
|
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to |
|
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to |
|
|
|
if isinstance(model, comfy.model_base.GenmoMochi): |
|
for k in sdk: |
|
if k.startswith("diffusion_model.") and k.endswith(".weight"): |
|
key_lora = k[len("diffusion_model."):-len(".weight")] |
|
key_map["{}".format(key_lora)] = k |
|
|
|
if isinstance(model, comfy.model_base.HunyuanVideo): |
|
for k in sdk: |
|
if k.startswith("diffusion_model.") and k.endswith(".weight"): |
|
|
|
key_lora = k |
|
key_lora = key_lora.replace("_mod.lin.", "_mod.linear.").replace("_attn.qkv.", "_attn_qkv.").replace("_attn.proj.", "_attn_proj.") |
|
key_lora = key_lora.replace("mlp.0.", "mlp.fc1.").replace("mlp.2.", "mlp.fc2.") |
|
key_lora = key_lora.replace(".modulation.lin.", ".modulation.linear.") |
|
key_lora = key_lora[len("diffusion_model."):-len(".weight")] |
|
key_map["transformer.{}".format(key_lora)] = k |
|
key_map["diffusion_model.{}".format(key_lora)] = k |
|
|
|
if isinstance(model, comfy.model_base.HiDream): |
|
for k in sdk: |
|
if k.startswith("diffusion_model."): |
|
if k.endswith(".weight"): |
|
key_lora = k[len("diffusion_model."):-len(".weight")] |
|
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k |
|
key_map["transformer.{}".format(key_lora)] = k |
|
|
|
if isinstance(model, comfy.model_base.ACEStep): |
|
for k in sdk: |
|
if k.startswith("diffusion_model.") and k.endswith(".weight"): |
|
key_lora = k[len("diffusion_model."):-len(".weight")] |
|
key_map["{}".format(key_lora)] = k |
|
|
|
if isinstance(model, comfy.model_base.QwenImage): |
|
for k in sdk: |
|
if k.startswith("diffusion_model.") and k.endswith(".weight"): |
|
key_lora = k[len("diffusion_model."):-len(".weight")] |
|
|
|
key_map["{}".format(key_lora)] = k |
|
|
|
key_map["transformer.{}".format(key_lora)] = k |
|
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k |
|
|
|
return key_map |
|
|
|
|
|
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor: |
|
""" |
|
Pad a tensor to a new shape with zeros. |
|
|
|
Args: |
|
tensor (torch.Tensor): The original tensor to be padded. |
|
new_shape (List[int]): The desired shape of the padded tensor. |
|
|
|
Returns: |
|
torch.Tensor: A new tensor padded with zeros to the specified shape. |
|
|
|
Note: |
|
If the new shape is smaller than the original tensor in any dimension, |
|
the original tensor will be truncated in that dimension. |
|
""" |
|
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]): |
|
raise ValueError("The new shape must be larger than the original tensor in all dimensions") |
|
|
|
if len(new_shape) != len(tensor.shape): |
|
raise ValueError("The new shape must have the same number of dimensions as the original tensor") |
|
|
|
|
|
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) |
|
|
|
|
|
orig_slices = tuple(slice(0, dim) for dim in tensor.shape) |
|
new_slices = tuple(slice(0, dim) for dim in tensor.shape) |
|
|
|
|
|
padded_tensor[new_slices] = tensor[orig_slices] |
|
|
|
return padded_tensor |
|
|
|
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, original_weights=None): |
|
for p in patches: |
|
strength = p[0] |
|
v = p[1] |
|
strength_model = p[2] |
|
offset = p[3] |
|
function = p[4] |
|
if function is None: |
|
function = lambda a: a |
|
|
|
old_weight = None |
|
if offset is not None: |
|
old_weight = weight |
|
weight = weight.narrow(offset[0], offset[1], offset[2]) |
|
|
|
if strength_model != 1.0: |
|
weight *= strength_model |
|
|
|
if isinstance(v, list): |
|
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), ) |
|
|
|
if isinstance(v, weight_adapter.WeightAdapterBase): |
|
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights) |
|
if output is None: |
|
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key)) |
|
else: |
|
weight = output |
|
if old_weight is not None: |
|
weight = old_weight |
|
continue |
|
|
|
if len(v) == 1: |
|
patch_type = "diff" |
|
elif len(v) == 2: |
|
patch_type = v[0] |
|
v = v[1] |
|
|
|
if patch_type == "diff": |
|
diff: torch.Tensor = v[0] |
|
|
|
do_pad_weight = len(v) > 1 and v[1]['pad_weight'] |
|
if do_pad_weight and diff.shape != weight.shape: |
|
logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape)) |
|
weight = pad_tensor_to_shape(weight, diff.shape) |
|
|
|
if strength != 0.0: |
|
if diff.shape != weight.shape: |
|
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape)) |
|
else: |
|
weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype)) |
|
elif patch_type == "set": |
|
weight.copy_(v[0]) |
|
elif patch_type == "model_as_lora": |
|
target_weight: torch.Tensor = v[0] |
|
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \ |
|
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype) |
|
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype)) |
|
else: |
|
logging.warning("patch type not recognized {} {}".format(patch_type, key)) |
|
|
|
if old_weight is not None: |
|
weight = old_weight |
|
|
|
return weight |
|
|