|
import asyncio |
|
import io |
|
from inspect import cleandoc |
|
from typing import Union, Optional |
|
from comfy.comfy_types.node_typing import IO, ComfyNodeABC |
|
from comfy_api_nodes.apis.bfl_api import ( |
|
BFLStatus, |
|
BFLFluxExpandImageRequest, |
|
BFLFluxFillImageRequest, |
|
BFLFluxCannyImageRequest, |
|
BFLFluxDepthImageRequest, |
|
BFLFluxProGenerateRequest, |
|
BFLFluxKontextProGenerateRequest, |
|
BFLFluxProUltraGenerateRequest, |
|
BFLFluxProGenerateResponse, |
|
) |
|
from comfy_api_nodes.apis.client import ( |
|
ApiEndpoint, |
|
HttpMethod, |
|
SynchronousOperation, |
|
) |
|
from comfy_api_nodes.apinode_utils import ( |
|
downscale_image_tensor, |
|
validate_aspect_ratio, |
|
process_image_response, |
|
resize_mask_to_image, |
|
validate_string, |
|
) |
|
|
|
import numpy as np |
|
from PIL import Image |
|
import aiohttp |
|
import torch |
|
import base64 |
|
import time |
|
from server import PromptServer |
|
|
|
|
|
def convert_mask_to_image(mask: torch.Tensor): |
|
""" |
|
Make mask have the expected amount of dims (4) and channels (3) to be recognized as an image. |
|
""" |
|
mask = mask.unsqueeze(-1) |
|
mask = torch.cat([mask]*3, dim=-1) |
|
return mask |
|
|
|
|
|
async def handle_bfl_synchronous_operation( |
|
operation: SynchronousOperation, |
|
timeout_bfl_calls=360, |
|
node_id: Union[str, None] = None, |
|
): |
|
response_api: BFLFluxProGenerateResponse = await operation.execute() |
|
return await _poll_until_generated( |
|
response_api.polling_url, timeout=timeout_bfl_calls, node_id=node_id |
|
) |
|
|
|
|
|
async def _poll_until_generated( |
|
polling_url: str, timeout=360, node_id: Union[str, None] = None |
|
): |
|
|
|
|
|
start_time = time.time() |
|
retries_404 = 0 |
|
max_retries_404 = 5 |
|
retry_404_seconds = 2 |
|
retry_202_seconds = 2 |
|
retry_pending_seconds = 1 |
|
|
|
async with aiohttp.ClientSession() as session: |
|
|
|
while True: |
|
if node_id: |
|
time_elapsed = time.time() - start_time |
|
PromptServer.instance.send_progress_text( |
|
f"Generating ({time_elapsed:.0f}s)", node_id |
|
) |
|
|
|
async with session.get(polling_url) as response: |
|
if response.status == 200: |
|
result = await response.json() |
|
if result["status"] == BFLStatus.ready: |
|
img_url = result["result"]["sample"] |
|
if node_id: |
|
PromptServer.instance.send_progress_text( |
|
f"Result URL: {img_url}", node_id |
|
) |
|
async with session.get(img_url) as img_resp: |
|
return process_image_response(await img_resp.content.read()) |
|
elif result["status"] in [ |
|
BFLStatus.request_moderated, |
|
BFLStatus.content_moderated, |
|
]: |
|
status = result["status"] |
|
raise Exception( |
|
f"BFL API did not return an image due to: {status}." |
|
) |
|
elif result["status"] == BFLStatus.error: |
|
raise Exception(f"BFL API encountered an error: {result}.") |
|
elif result["status"] == BFLStatus.pending: |
|
await asyncio.sleep(retry_pending_seconds) |
|
continue |
|
elif response.status == 404: |
|
if retries_404 < max_retries_404: |
|
retries_404 += 1 |
|
await asyncio.sleep(retry_404_seconds) |
|
continue |
|
raise Exception( |
|
f"BFL API could not find task after {max_retries_404} tries." |
|
) |
|
elif response.status == 202: |
|
await asyncio.sleep(retry_202_seconds) |
|
elif time.time() - start_time > timeout: |
|
raise Exception( |
|
f"BFL API experienced a timeout; could not return request under {timeout} seconds." |
|
) |
|
else: |
|
raise Exception(f"BFL API encountered an error: {response.json()}") |
|
|
|
def convert_image_to_base64(image: torch.Tensor): |
|
scaled_image = downscale_image_tensor(image, total_pixels=2048 * 2048) |
|
|
|
if len(scaled_image.shape) > 3: |
|
scaled_image = scaled_image[0] |
|
image_np = (scaled_image.numpy() * 255).astype(np.uint8) |
|
img = Image.fromarray(image_np) |
|
img_byte_arr = io.BytesIO() |
|
img.save(img_byte_arr, format="PNG") |
|
return base64.b64encode(img_byte_arr.getvalue()).decode() |
|
|
|
|
|
class FluxProUltraImageNode(ComfyNodeABC): |
|
""" |
|
Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution. |
|
""" |
|
|
|
MINIMUM_RATIO = 1 / 4 |
|
MAXIMUM_RATIO = 4 / 1 |
|
MINIMUM_RATIO_STR = "1:4" |
|
MAXIMUM_RATIO_STR = "4:1" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"prompt": ( |
|
IO.STRING, |
|
{ |
|
"multiline": True, |
|
"default": "", |
|
"tooltip": "Prompt for the image generation", |
|
}, |
|
), |
|
"prompt_upsampling": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", |
|
}, |
|
), |
|
"seed": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 0xFFFFFFFFFFFFFFFF, |
|
"control_after_generate": True, |
|
"tooltip": "The random seed used for creating the noise.", |
|
}, |
|
), |
|
"aspect_ratio": ( |
|
IO.STRING, |
|
{ |
|
"default": "16:9", |
|
"tooltip": "Aspect ratio of image; must be between 1:4 and 4:1.", |
|
}, |
|
), |
|
"raw": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "When True, generate less processed, more natural-looking images.", |
|
}, |
|
), |
|
}, |
|
"optional": { |
|
"image_prompt": (IO.IMAGE,), |
|
"image_prompt_strength": ( |
|
IO.FLOAT, |
|
{ |
|
"default": 0.1, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"step": 0.01, |
|
"tooltip": "Blend between the prompt and the image prompt.", |
|
}, |
|
), |
|
}, |
|
"hidden": { |
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
"unique_id": "UNIQUE_ID", |
|
}, |
|
} |
|
|
|
@classmethod |
|
def VALIDATE_INPUTS(cls, aspect_ratio: str): |
|
try: |
|
validate_aspect_ratio( |
|
aspect_ratio, |
|
minimum_ratio=cls.MINIMUM_RATIO, |
|
maximum_ratio=cls.MAXIMUM_RATIO, |
|
minimum_ratio_str=cls.MINIMUM_RATIO_STR, |
|
maximum_ratio_str=cls.MAXIMUM_RATIO_STR, |
|
) |
|
except Exception as e: |
|
return str(e) |
|
return True |
|
|
|
RETURN_TYPES = (IO.IMAGE,) |
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
FUNCTION = "api_call" |
|
API_NODE = True |
|
CATEGORY = "api node/image/BFL" |
|
|
|
async def api_call( |
|
self, |
|
prompt: str, |
|
aspect_ratio: str, |
|
prompt_upsampling=False, |
|
raw=False, |
|
seed=0, |
|
image_prompt=None, |
|
image_prompt_strength=0.1, |
|
unique_id: Union[str, None] = None, |
|
**kwargs, |
|
): |
|
if image_prompt is None: |
|
validate_string(prompt, strip_whitespace=False) |
|
operation = SynchronousOperation( |
|
endpoint=ApiEndpoint( |
|
path="/proxy/bfl/flux-pro-1.1-ultra/generate", |
|
method=HttpMethod.POST, |
|
request_model=BFLFluxProUltraGenerateRequest, |
|
response_model=BFLFluxProGenerateResponse, |
|
), |
|
request=BFLFluxProUltraGenerateRequest( |
|
prompt=prompt, |
|
prompt_upsampling=prompt_upsampling, |
|
seed=seed, |
|
aspect_ratio=validate_aspect_ratio( |
|
aspect_ratio, |
|
minimum_ratio=self.MINIMUM_RATIO, |
|
maximum_ratio=self.MAXIMUM_RATIO, |
|
minimum_ratio_str=self.MINIMUM_RATIO_STR, |
|
maximum_ratio_str=self.MAXIMUM_RATIO_STR, |
|
), |
|
raw=raw, |
|
image_prompt=( |
|
image_prompt |
|
if image_prompt is None |
|
else convert_image_to_base64(image_prompt) |
|
), |
|
image_prompt_strength=( |
|
None if image_prompt is None else round(image_prompt_strength, 2) |
|
), |
|
), |
|
auth_kwargs=kwargs, |
|
) |
|
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) |
|
return (output_image,) |
|
|
|
|
|
class FluxKontextProImageNode(ComfyNodeABC): |
|
""" |
|
Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio. |
|
""" |
|
|
|
MINIMUM_RATIO = 1 / 4 |
|
MAXIMUM_RATIO = 4 / 1 |
|
MINIMUM_RATIO_STR = "1:4" |
|
MAXIMUM_RATIO_STR = "4:1" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"prompt": ( |
|
IO.STRING, |
|
{ |
|
"multiline": True, |
|
"default": "", |
|
"tooltip": "Prompt for the image generation - specify what and how to edit.", |
|
}, |
|
), |
|
"aspect_ratio": ( |
|
IO.STRING, |
|
{ |
|
"default": "16:9", |
|
"tooltip": "Aspect ratio of image; must be between 1:4 and 4:1.", |
|
}, |
|
), |
|
"guidance": ( |
|
IO.FLOAT, |
|
{ |
|
"default": 3.0, |
|
"min": 0.1, |
|
"max": 99.0, |
|
"step": 0.1, |
|
"tooltip": "Guidance strength for the image generation process" |
|
}, |
|
), |
|
"steps": ( |
|
IO.INT, |
|
{ |
|
"default": 50, |
|
"min": 1, |
|
"max": 150, |
|
"tooltip": "Number of steps for the image generation process" |
|
}, |
|
), |
|
"seed": ( |
|
IO.INT, |
|
{ |
|
"default": 1234, |
|
"min": 0, |
|
"max": 0xFFFFFFFFFFFFFFFF, |
|
"control_after_generate": True, |
|
"tooltip": "The random seed used for creating the noise.", |
|
}, |
|
), |
|
"prompt_upsampling": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", |
|
}, |
|
), |
|
}, |
|
"optional": { |
|
"input_image": (IO.IMAGE,), |
|
}, |
|
"hidden": { |
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
"unique_id": "UNIQUE_ID", |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (IO.IMAGE,) |
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
FUNCTION = "api_call" |
|
API_NODE = True |
|
CATEGORY = "api node/image/BFL" |
|
|
|
BFL_PATH = "/proxy/bfl/flux-kontext-pro/generate" |
|
|
|
async def api_call( |
|
self, |
|
prompt: str, |
|
aspect_ratio: str, |
|
guidance: float, |
|
steps: int, |
|
input_image: Optional[torch.Tensor]=None, |
|
seed=0, |
|
prompt_upsampling=False, |
|
unique_id: Union[str, None] = None, |
|
**kwargs, |
|
): |
|
aspect_ratio = validate_aspect_ratio( |
|
aspect_ratio, |
|
minimum_ratio=self.MINIMUM_RATIO, |
|
maximum_ratio=self.MAXIMUM_RATIO, |
|
minimum_ratio_str=self.MINIMUM_RATIO_STR, |
|
maximum_ratio_str=self.MAXIMUM_RATIO_STR, |
|
) |
|
if input_image is None: |
|
validate_string(prompt, strip_whitespace=False) |
|
operation = SynchronousOperation( |
|
endpoint=ApiEndpoint( |
|
path=self.BFL_PATH, |
|
method=HttpMethod.POST, |
|
request_model=BFLFluxKontextProGenerateRequest, |
|
response_model=BFLFluxProGenerateResponse, |
|
), |
|
request=BFLFluxKontextProGenerateRequest( |
|
prompt=prompt, |
|
prompt_upsampling=prompt_upsampling, |
|
guidance=round(guidance, 1), |
|
steps=steps, |
|
seed=seed, |
|
aspect_ratio=aspect_ratio, |
|
input_image=( |
|
input_image |
|
if input_image is None |
|
else convert_image_to_base64(input_image) |
|
) |
|
), |
|
auth_kwargs=kwargs, |
|
) |
|
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) |
|
return (output_image,) |
|
|
|
|
|
class FluxKontextMaxImageNode(FluxKontextProImageNode): |
|
""" |
|
Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio. |
|
""" |
|
|
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
BFL_PATH = "/proxy/bfl/flux-kontext-max/generate" |
|
|
|
|
|
class FluxProImageNode(ComfyNodeABC): |
|
""" |
|
Generates images synchronously based on prompt and resolution. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"prompt": ( |
|
IO.STRING, |
|
{ |
|
"multiline": True, |
|
"default": "", |
|
"tooltip": "Prompt for the image generation", |
|
}, |
|
), |
|
"prompt_upsampling": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", |
|
}, |
|
), |
|
"width": ( |
|
IO.INT, |
|
{ |
|
"default": 1024, |
|
"min": 256, |
|
"max": 1440, |
|
"step": 32, |
|
}, |
|
), |
|
"height": ( |
|
IO.INT, |
|
{ |
|
"default": 768, |
|
"min": 256, |
|
"max": 1440, |
|
"step": 32, |
|
}, |
|
), |
|
"seed": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 0xFFFFFFFFFFFFFFFF, |
|
"control_after_generate": True, |
|
"tooltip": "The random seed used for creating the noise.", |
|
}, |
|
), |
|
}, |
|
"optional": { |
|
"image_prompt": (IO.IMAGE,), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}, |
|
"hidden": { |
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
"unique_id": "UNIQUE_ID", |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (IO.IMAGE,) |
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
FUNCTION = "api_call" |
|
API_NODE = True |
|
CATEGORY = "api node/image/BFL" |
|
|
|
async def api_call( |
|
self, |
|
prompt: str, |
|
prompt_upsampling, |
|
width: int, |
|
height: int, |
|
seed=0, |
|
image_prompt=None, |
|
|
|
unique_id: Union[str, None] = None, |
|
**kwargs, |
|
): |
|
image_prompt = ( |
|
image_prompt |
|
if image_prompt is None |
|
else convert_image_to_base64(image_prompt) |
|
) |
|
|
|
operation = SynchronousOperation( |
|
endpoint=ApiEndpoint( |
|
path="/proxy/bfl/flux-pro-1.1/generate", |
|
method=HttpMethod.POST, |
|
request_model=BFLFluxProGenerateRequest, |
|
response_model=BFLFluxProGenerateResponse, |
|
), |
|
request=BFLFluxProGenerateRequest( |
|
prompt=prompt, |
|
prompt_upsampling=prompt_upsampling, |
|
width=width, |
|
height=height, |
|
seed=seed, |
|
image_prompt=image_prompt, |
|
), |
|
auth_kwargs=kwargs, |
|
) |
|
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) |
|
return (output_image,) |
|
|
|
|
|
class FluxProExpandNode(ComfyNodeABC): |
|
""" |
|
Outpaints image based on prompt. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": (IO.IMAGE,), |
|
"prompt": ( |
|
IO.STRING, |
|
{ |
|
"multiline": True, |
|
"default": "", |
|
"tooltip": "Prompt for the image generation", |
|
}, |
|
), |
|
"prompt_upsampling": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", |
|
}, |
|
), |
|
"top": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 2048, |
|
"tooltip": "Number of pixels to expand at the top of the image" |
|
}, |
|
), |
|
"bottom": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 2048, |
|
"tooltip": "Number of pixels to expand at the bottom of the image" |
|
}, |
|
), |
|
"left": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 2048, |
|
"tooltip": "Number of pixels to expand at the left side of the image" |
|
}, |
|
), |
|
"right": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 2048, |
|
"tooltip": "Number of pixels to expand at the right side of the image" |
|
}, |
|
), |
|
"guidance": ( |
|
IO.FLOAT, |
|
{ |
|
"default": 60, |
|
"min": 1.5, |
|
"max": 100, |
|
"tooltip": "Guidance strength for the image generation process" |
|
}, |
|
), |
|
"steps": ( |
|
IO.INT, |
|
{ |
|
"default": 50, |
|
"min": 15, |
|
"max": 50, |
|
"tooltip": "Number of steps for the image generation process" |
|
}, |
|
), |
|
"seed": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 0xFFFFFFFFFFFFFFFF, |
|
"control_after_generate": True, |
|
"tooltip": "The random seed used for creating the noise.", |
|
}, |
|
), |
|
}, |
|
"optional": {}, |
|
"hidden": { |
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
"unique_id": "UNIQUE_ID", |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (IO.IMAGE,) |
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
FUNCTION = "api_call" |
|
API_NODE = True |
|
CATEGORY = "api node/image/BFL" |
|
|
|
async def api_call( |
|
self, |
|
image: torch.Tensor, |
|
prompt: str, |
|
prompt_upsampling: bool, |
|
top: int, |
|
bottom: int, |
|
left: int, |
|
right: int, |
|
steps: int, |
|
guidance: float, |
|
seed=0, |
|
unique_id: Union[str, None] = None, |
|
**kwargs, |
|
): |
|
image = convert_image_to_base64(image) |
|
|
|
operation = SynchronousOperation( |
|
endpoint=ApiEndpoint( |
|
path="/proxy/bfl/flux-pro-1.0-expand/generate", |
|
method=HttpMethod.POST, |
|
request_model=BFLFluxExpandImageRequest, |
|
response_model=BFLFluxProGenerateResponse, |
|
), |
|
request=BFLFluxExpandImageRequest( |
|
prompt=prompt, |
|
prompt_upsampling=prompt_upsampling, |
|
top=top, |
|
bottom=bottom, |
|
left=left, |
|
right=right, |
|
steps=steps, |
|
guidance=guidance, |
|
seed=seed, |
|
image=image, |
|
), |
|
auth_kwargs=kwargs, |
|
) |
|
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) |
|
return (output_image,) |
|
|
|
|
|
|
|
class FluxProFillNode(ComfyNodeABC): |
|
""" |
|
Inpaints image based on mask and prompt. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": (IO.IMAGE,), |
|
"mask": (IO.MASK,), |
|
"prompt": ( |
|
IO.STRING, |
|
{ |
|
"multiline": True, |
|
"default": "", |
|
"tooltip": "Prompt for the image generation", |
|
}, |
|
), |
|
"prompt_upsampling": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", |
|
}, |
|
), |
|
"guidance": ( |
|
IO.FLOAT, |
|
{ |
|
"default": 60, |
|
"min": 1.5, |
|
"max": 100, |
|
"tooltip": "Guidance strength for the image generation process" |
|
}, |
|
), |
|
"steps": ( |
|
IO.INT, |
|
{ |
|
"default": 50, |
|
"min": 15, |
|
"max": 50, |
|
"tooltip": "Number of steps for the image generation process" |
|
}, |
|
), |
|
"seed": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 0xFFFFFFFFFFFFFFFF, |
|
"control_after_generate": True, |
|
"tooltip": "The random seed used for creating the noise.", |
|
}, |
|
), |
|
}, |
|
"optional": {}, |
|
"hidden": { |
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
"unique_id": "UNIQUE_ID", |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (IO.IMAGE,) |
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
FUNCTION = "api_call" |
|
API_NODE = True |
|
CATEGORY = "api node/image/BFL" |
|
|
|
async def api_call( |
|
self, |
|
image: torch.Tensor, |
|
mask: torch.Tensor, |
|
prompt: str, |
|
prompt_upsampling: bool, |
|
steps: int, |
|
guidance: float, |
|
seed=0, |
|
unique_id: Union[str, None] = None, |
|
**kwargs, |
|
): |
|
|
|
mask = resize_mask_to_image(mask, image) |
|
mask = convert_image_to_base64(convert_mask_to_image(mask)) |
|
|
|
image = convert_image_to_base64(image[:, :, :, :3]) |
|
|
|
operation = SynchronousOperation( |
|
endpoint=ApiEndpoint( |
|
path="/proxy/bfl/flux-pro-1.0-fill/generate", |
|
method=HttpMethod.POST, |
|
request_model=BFLFluxFillImageRequest, |
|
response_model=BFLFluxProGenerateResponse, |
|
), |
|
request=BFLFluxFillImageRequest( |
|
prompt=prompt, |
|
prompt_upsampling=prompt_upsampling, |
|
steps=steps, |
|
guidance=guidance, |
|
seed=seed, |
|
image=image, |
|
mask=mask, |
|
), |
|
auth_kwargs=kwargs, |
|
) |
|
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) |
|
return (output_image,) |
|
|
|
|
|
class FluxProCannyNode(ComfyNodeABC): |
|
""" |
|
Generate image using a control image (canny). |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"control_image": (IO.IMAGE,), |
|
"prompt": ( |
|
IO.STRING, |
|
{ |
|
"multiline": True, |
|
"default": "", |
|
"tooltip": "Prompt for the image generation", |
|
}, |
|
), |
|
"prompt_upsampling": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", |
|
}, |
|
), |
|
"canny_low_threshold": ( |
|
IO.FLOAT, |
|
{ |
|
"default": 0.1, |
|
"min": 0.01, |
|
"max": 0.99, |
|
"step": 0.01, |
|
"tooltip": "Low threshold for Canny edge detection; ignored if skip_processing is True" |
|
}, |
|
), |
|
"canny_high_threshold": ( |
|
IO.FLOAT, |
|
{ |
|
"default": 0.4, |
|
"min": 0.01, |
|
"max": 0.99, |
|
"step": 0.01, |
|
"tooltip": "High threshold for Canny edge detection; ignored if skip_processing is True" |
|
}, |
|
), |
|
"skip_preprocessing": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to skip preprocessing; set to True if control_image already is canny-fied, False if it is a raw image.", |
|
}, |
|
), |
|
"guidance": ( |
|
IO.FLOAT, |
|
{ |
|
"default": 30, |
|
"min": 1, |
|
"max": 100, |
|
"tooltip": "Guidance strength for the image generation process" |
|
}, |
|
), |
|
"steps": ( |
|
IO.INT, |
|
{ |
|
"default": 50, |
|
"min": 15, |
|
"max": 50, |
|
"tooltip": "Number of steps for the image generation process" |
|
}, |
|
), |
|
"seed": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 0xFFFFFFFFFFFFFFFF, |
|
"control_after_generate": True, |
|
"tooltip": "The random seed used for creating the noise.", |
|
}, |
|
), |
|
}, |
|
"optional": {}, |
|
"hidden": { |
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
"unique_id": "UNIQUE_ID", |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (IO.IMAGE,) |
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
FUNCTION = "api_call" |
|
API_NODE = True |
|
CATEGORY = "api node/image/BFL" |
|
|
|
async def api_call( |
|
self, |
|
control_image: torch.Tensor, |
|
prompt: str, |
|
prompt_upsampling: bool, |
|
canny_low_threshold: float, |
|
canny_high_threshold: float, |
|
skip_preprocessing: bool, |
|
steps: int, |
|
guidance: float, |
|
seed=0, |
|
unique_id: Union[str, None] = None, |
|
**kwargs, |
|
): |
|
control_image = convert_image_to_base64(control_image[:, :, :, :3]) |
|
preprocessed_image = None |
|
|
|
|
|
def scale_value(value: float, min_val=0, max_val=500): |
|
return min_val + value * (max_val - min_val) |
|
canny_low_threshold = int(round(scale_value(canny_low_threshold))) |
|
canny_high_threshold = int(round(scale_value(canny_high_threshold))) |
|
|
|
|
|
if skip_preprocessing: |
|
preprocessed_image = control_image |
|
control_image = None |
|
canny_low_threshold = None |
|
canny_high_threshold = None |
|
|
|
operation = SynchronousOperation( |
|
endpoint=ApiEndpoint( |
|
path="/proxy/bfl/flux-pro-1.0-canny/generate", |
|
method=HttpMethod.POST, |
|
request_model=BFLFluxCannyImageRequest, |
|
response_model=BFLFluxProGenerateResponse, |
|
), |
|
request=BFLFluxCannyImageRequest( |
|
prompt=prompt, |
|
prompt_upsampling=prompt_upsampling, |
|
steps=steps, |
|
guidance=guidance, |
|
seed=seed, |
|
control_image=control_image, |
|
canny_low_threshold=canny_low_threshold, |
|
canny_high_threshold=canny_high_threshold, |
|
preprocessed_image=preprocessed_image, |
|
), |
|
auth_kwargs=kwargs, |
|
) |
|
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) |
|
return (output_image,) |
|
|
|
|
|
class FluxProDepthNode(ComfyNodeABC): |
|
""" |
|
Generate image using a control image (depth). |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"control_image": (IO.IMAGE,), |
|
"prompt": ( |
|
IO.STRING, |
|
{ |
|
"multiline": True, |
|
"default": "", |
|
"tooltip": "Prompt for the image generation", |
|
}, |
|
), |
|
"prompt_upsampling": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", |
|
}, |
|
), |
|
"skip_preprocessing": ( |
|
IO.BOOLEAN, |
|
{ |
|
"default": False, |
|
"tooltip": "Whether to skip preprocessing; set to True if control_image already is depth-ified, False if it is a raw image.", |
|
}, |
|
), |
|
"guidance": ( |
|
IO.FLOAT, |
|
{ |
|
"default": 15, |
|
"min": 1, |
|
"max": 100, |
|
"tooltip": "Guidance strength for the image generation process" |
|
}, |
|
), |
|
"steps": ( |
|
IO.INT, |
|
{ |
|
"default": 50, |
|
"min": 15, |
|
"max": 50, |
|
"tooltip": "Number of steps for the image generation process" |
|
}, |
|
), |
|
"seed": ( |
|
IO.INT, |
|
{ |
|
"default": 0, |
|
"min": 0, |
|
"max": 0xFFFFFFFFFFFFFFFF, |
|
"control_after_generate": True, |
|
"tooltip": "The random seed used for creating the noise.", |
|
}, |
|
), |
|
}, |
|
"optional": {}, |
|
"hidden": { |
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
"unique_id": "UNIQUE_ID", |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (IO.IMAGE,) |
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
FUNCTION = "api_call" |
|
API_NODE = True |
|
CATEGORY = "api node/image/BFL" |
|
|
|
async def api_call( |
|
self, |
|
control_image: torch.Tensor, |
|
prompt: str, |
|
prompt_upsampling: bool, |
|
skip_preprocessing: bool, |
|
steps: int, |
|
guidance: float, |
|
seed=0, |
|
unique_id: Union[str, None] = None, |
|
**kwargs, |
|
): |
|
control_image = convert_image_to_base64(control_image[:,:,:,:3]) |
|
preprocessed_image = None |
|
|
|
if skip_preprocessing: |
|
preprocessed_image = control_image |
|
control_image = None |
|
|
|
operation = SynchronousOperation( |
|
endpoint=ApiEndpoint( |
|
path="/proxy/bfl/flux-pro-1.0-depth/generate", |
|
method=HttpMethod.POST, |
|
request_model=BFLFluxDepthImageRequest, |
|
response_model=BFLFluxProGenerateResponse, |
|
), |
|
request=BFLFluxDepthImageRequest( |
|
prompt=prompt, |
|
prompt_upsampling=prompt_upsampling, |
|
steps=steps, |
|
guidance=guidance, |
|
seed=seed, |
|
control_image=control_image, |
|
preprocessed_image=preprocessed_image, |
|
), |
|
auth_kwargs=kwargs, |
|
) |
|
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) |
|
return (output_image,) |
|
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"FluxProUltraImageNode": FluxProUltraImageNode, |
|
|
|
"FluxKontextProImageNode": FluxKontextProImageNode, |
|
"FluxKontextMaxImageNode": FluxKontextMaxImageNode, |
|
"FluxProExpandNode": FluxProExpandNode, |
|
"FluxProFillNode": FluxProFillNode, |
|
"FluxProCannyNode": FluxProCannyNode, |
|
"FluxProDepthNode": FluxProDepthNode, |
|
} |
|
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"FluxProUltraImageNode": "Flux 1.1 [pro] Ultra Image", |
|
|
|
"FluxKontextProImageNode": "Flux.1 Kontext [pro] Image", |
|
"FluxKontextMaxImageNode": "Flux.1 Kontext [max] Image", |
|
"FluxProExpandNode": "Flux.1 Expand Image", |
|
"FluxProFillNode": "Flux.1 Fill Image", |
|
"FluxProCannyNode": "Flux.1 Canny Control Image", |
|
"FluxProDepthNode": "Flux.1 Depth Control Image", |
|
} |
|
|