|
from typing_extensions import override |
|
|
|
from comfy_api.latest import ComfyExtension, io |
|
|
|
|
|
def attention_multiply(attn, model, q, k, v, out): |
|
m = model.clone() |
|
sd = model.model_state_dict() |
|
|
|
for key in sd: |
|
if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)): |
|
m.add_patches({key: (None,)}, 0.0, q) |
|
if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)): |
|
m.add_patches({key: (None,)}, 0.0, k) |
|
if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)): |
|
m.add_patches({key: (None,)}, 0.0, v) |
|
if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)): |
|
m.add_patches({key: (None,)}, 0.0, out) |
|
|
|
return m |
|
|
|
|
|
class UNetSelfAttentionMultiply(io.ComfyNode): |
|
@classmethod |
|
def define_schema(cls) -> io.Schema: |
|
return io.Schema( |
|
node_id="UNetSelfAttentionMultiply", |
|
category="_for_testing/attention_experiments", |
|
inputs=[ |
|
io.Model.Input("model"), |
|
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01), |
|
], |
|
outputs=[io.Model.Output()], |
|
is_experimental=True, |
|
) |
|
|
|
@classmethod |
|
def execute(cls, model, q, k, v, out) -> io.NodeOutput: |
|
m = attention_multiply("attn1", model, q, k, v, out) |
|
return io.NodeOutput(m) |
|
|
|
|
|
class UNetCrossAttentionMultiply(io.ComfyNode): |
|
@classmethod |
|
def define_schema(cls) -> io.Schema: |
|
return io.Schema( |
|
node_id="UNetCrossAttentionMultiply", |
|
category="_for_testing/attention_experiments", |
|
inputs=[ |
|
io.Model.Input("model"), |
|
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01), |
|
], |
|
outputs=[io.Model.Output()], |
|
is_experimental=True, |
|
) |
|
|
|
@classmethod |
|
def execute(cls, model, q, k, v, out) -> io.NodeOutput: |
|
m = attention_multiply("attn2", model, q, k, v, out) |
|
return io.NodeOutput(m) |
|
|
|
|
|
class CLIPAttentionMultiply(io.ComfyNode): |
|
@classmethod |
|
def define_schema(cls) -> io.Schema: |
|
return io.Schema( |
|
node_id="CLIPAttentionMultiply", |
|
category="_for_testing/attention_experiments", |
|
inputs=[ |
|
io.Clip.Input("clip"), |
|
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01), |
|
], |
|
outputs=[io.Clip.Output()], |
|
is_experimental=True, |
|
) |
|
|
|
@classmethod |
|
def execute(cls, clip, q, k, v, out) -> io.NodeOutput: |
|
m = clip.clone() |
|
sd = m.patcher.model_state_dict() |
|
|
|
for key in sd: |
|
if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"): |
|
m.add_patches({key: (None,)}, 0.0, q) |
|
if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"): |
|
m.add_patches({key: (None,)}, 0.0, k) |
|
if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"): |
|
m.add_patches({key: (None,)}, 0.0, v) |
|
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"): |
|
m.add_patches({key: (None,)}, 0.0, out) |
|
return io.NodeOutput(m) |
|
|
|
|
|
class UNetTemporalAttentionMultiply(io.ComfyNode): |
|
@classmethod |
|
def define_schema(cls) -> io.Schema: |
|
return io.Schema( |
|
node_id="UNetTemporalAttentionMultiply", |
|
category="_for_testing/attention_experiments", |
|
inputs=[ |
|
io.Model.Input("model"), |
|
io.Float.Input("self_structural", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("self_temporal", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("cross_structural", default=1.0, min=0.0, max=10.0, step=0.01), |
|
io.Float.Input("cross_temporal", default=1.0, min=0.0, max=10.0, step=0.01), |
|
], |
|
outputs=[io.Model.Output()], |
|
is_experimental=True, |
|
) |
|
|
|
@classmethod |
|
def execute(cls, model, self_structural, self_temporal, cross_structural, cross_temporal) -> io.NodeOutput: |
|
m = model.clone() |
|
sd = model.model_state_dict() |
|
|
|
for k in sd: |
|
if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")): |
|
if '.time_stack.' in k: |
|
m.add_patches({k: (None,)}, 0.0, self_temporal) |
|
else: |
|
m.add_patches({k: (None,)}, 0.0, self_structural) |
|
elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")): |
|
if '.time_stack.' in k: |
|
m.add_patches({k: (None,)}, 0.0, cross_temporal) |
|
else: |
|
m.add_patches({k: (None,)}, 0.0, cross_structural) |
|
return io.NodeOutput(m) |
|
|
|
|
|
class AttentionMultiplyExtension(ComfyExtension): |
|
@override |
|
async def get_node_list(self) -> list[type[io.ComfyNode]]: |
|
return [ |
|
UNetSelfAttentionMultiply, |
|
UNetCrossAttentionMultiply, |
|
CLIPAttentionMultiply, |
|
UNetTemporalAttentionMultiply, |
|
] |
|
|
|
async def comfy_entrypoint() -> AttentionMultiplyExtension: |
|
return AttentionMultiplyExtension() |
|
|