|
import nodes |
|
import torch |
|
import numpy as np |
|
from einops import rearrange |
|
import comfy.model_management |
|
|
|
|
|
|
|
MAX_RESOLUTION = nodes.MAX_RESOLUTION |
|
|
|
CAMERA_DICT = { |
|
"base_T_norm": 1.5, |
|
"base_angle": np.pi/3, |
|
"Static": { "angle":[0., 0., 0.], "T":[0., 0., 0.]}, |
|
"Pan Up": { "angle":[0., 0., 0.], "T":[0., -1., 0.]}, |
|
"Pan Down": { "angle":[0., 0., 0.], "T":[0.,1.,0.]}, |
|
"Pan Left": { "angle":[0., 0., 0.], "T":[-1.,0.,0.]}, |
|
"Pan Right": { "angle":[0., 0., 0.], "T": [1.,0.,0.]}, |
|
"Zoom In": { "angle":[0., 0., 0.], "T": [0.,0.,2.]}, |
|
"Zoom Out": { "angle":[0., 0., 0.], "T": [0.,0.,-2.]}, |
|
"Anti Clockwise (ACW)": { "angle": [0., 0., -1.], "T":[0., 0., 0.]}, |
|
"ClockWise (CW)": { "angle": [0., 0., 1.], "T":[0., 0., 0.]}, |
|
} |
|
|
|
|
|
def process_pose_params(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu'): |
|
|
|
def get_relative_pose(cam_params): |
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py |
|
""" |
|
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params] |
|
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params] |
|
cam_to_origin = 0 |
|
target_cam_c2w = np.array([ |
|
[1, 0, 0, 0], |
|
[0, 1, 0, -cam_to_origin], |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 1] |
|
]) |
|
abs2rel = target_cam_c2w @ abs_w2cs[0] |
|
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]] |
|
ret_poses = np.array(ret_poses, dtype=np.float32) |
|
return ret_poses |
|
|
|
"""Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py |
|
""" |
|
cam_params = [Camera(cam_param) for cam_param in cam_params] |
|
|
|
sample_wh_ratio = width / height |
|
pose_wh_ratio = original_pose_width / original_pose_height |
|
|
|
if pose_wh_ratio > sample_wh_ratio: |
|
resized_ori_w = height * pose_wh_ratio |
|
for cam_param in cam_params: |
|
cam_param.fx = resized_ori_w * cam_param.fx / width |
|
else: |
|
resized_ori_h = width / pose_wh_ratio |
|
for cam_param in cam_params: |
|
cam_param.fy = resized_ori_h * cam_param.fy / height |
|
|
|
intrinsic = np.asarray([[cam_param.fx * width, |
|
cam_param.fy * height, |
|
cam_param.cx * width, |
|
cam_param.cy * height] |
|
for cam_param in cam_params], dtype=np.float32) |
|
|
|
K = torch.as_tensor(intrinsic)[None] |
|
c2ws = get_relative_pose(cam_params) |
|
c2ws = torch.as_tensor(c2ws)[None] |
|
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() |
|
plucker_embedding = plucker_embedding[None] |
|
plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0] |
|
return plucker_embedding |
|
|
|
class Camera(object): |
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py |
|
""" |
|
def __init__(self, entry): |
|
fx, fy, cx, cy = entry[1:5] |
|
self.fx = fx |
|
self.fy = fy |
|
self.cx = cx |
|
self.cy = cy |
|
c2w_mat = np.array(entry[7:]).reshape(4, 4) |
|
self.c2w_mat = c2w_mat |
|
self.w2c_mat = np.linalg.inv(c2w_mat) |
|
|
|
def ray_condition(K, c2w, H, W, device): |
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py |
|
""" |
|
|
|
|
|
|
|
B = K.shape[0] |
|
|
|
j, i = torch.meshgrid( |
|
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype), |
|
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype), |
|
indexing='ij' |
|
) |
|
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 |
|
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 |
|
|
|
fx, fy, cx, cy = K.chunk(4, dim=-1) |
|
|
|
zs = torch.ones_like(i) |
|
xs = (i - cx) / fx * zs |
|
ys = (j - cy) / fy * zs |
|
zs = zs.expand_as(ys) |
|
|
|
directions = torch.stack((xs, ys, zs), dim=-1) |
|
directions = directions / directions.norm(dim=-1, keepdim=True) |
|
|
|
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) |
|
rays_o = c2w[..., :3, 3] |
|
rays_o = rays_o[:, :, None].expand_as(rays_d) |
|
|
|
rays_dxo = torch.cross(rays_o, rays_d) |
|
plucker = torch.cat([rays_dxo, rays_d], dim=-1) |
|
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) |
|
|
|
return plucker |
|
|
|
def get_camera_motion(angle, T, speed, n=81): |
|
def compute_R_form_rad_angle(angles): |
|
theta_x, theta_y, theta_z = angles |
|
Rx = np.array([[1, 0, 0], |
|
[0, np.cos(theta_x), -np.sin(theta_x)], |
|
[0, np.sin(theta_x), np.cos(theta_x)]]) |
|
|
|
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)], |
|
[0, 1, 0], |
|
[-np.sin(theta_y), 0, np.cos(theta_y)]]) |
|
|
|
Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0], |
|
[np.sin(theta_z), np.cos(theta_z), 0], |
|
[0, 0, 1]]) |
|
|
|
R = np.dot(Rz, np.dot(Ry, Rx)) |
|
return R |
|
RT = [] |
|
for i in range(n): |
|
_angle = (i/n)*speed*(CAMERA_DICT["base_angle"])*angle |
|
R = compute_R_form_rad_angle(_angle) |
|
_T=(i/n)*speed*(CAMERA_DICT["base_T_norm"])*(T.reshape(3,1)) |
|
_RT = np.concatenate([R,_T], axis=1) |
|
RT.append(_RT) |
|
RT = np.stack(RT) |
|
return RT |
|
|
|
class WanCameraEmbedding: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"camera_pose":(["Static","Pan Up","Pan Down","Pan Left","Pan Right","Zoom In","Zoom Out","Anti Clockwise (ACW)", "ClockWise (CW)"],{"default":"Static"}), |
|
"width": ("INT", {"default": 832, "min": 16, "max": MAX_RESOLUTION, "step": 16}), |
|
"height": ("INT", {"default": 480, "min": 16, "max": MAX_RESOLUTION, "step": 16}), |
|
"length": ("INT", {"default": 81, "min": 1, "max": MAX_RESOLUTION, "step": 4}), |
|
}, |
|
"optional":{ |
|
"speed":("FLOAT",{"default":1.0, "min": 0, "max": 10.0, "step": 0.1}), |
|
"fx":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.000000001}), |
|
"fy":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.000000001}), |
|
"cx":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.01}), |
|
"cy":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.01}), |
|
} |
|
|
|
} |
|
|
|
RETURN_TYPES = ("WAN_CAMERA_EMBEDDING","INT","INT","INT") |
|
RETURN_NAMES = ("camera_embedding","width","height","length") |
|
FUNCTION = "run" |
|
CATEGORY = "camera" |
|
|
|
def run(self, camera_pose, width, height, length, speed=1.0, fx=0.5, fy=0.5, cx=0.5, cy=0.5): |
|
""" |
|
Use Camera trajectory as extrinsic parameters to calculate Plücker embeddings (Sitzmannet al., 2021) |
|
Adapted from https://github.com/aigc-apps/VideoX-Fun/blob/main/comfyui/comfyui_nodes.py |
|
""" |
|
motion_list = [camera_pose] |
|
speed = speed |
|
angle = np.array(CAMERA_DICT[motion_list[0]]["angle"]) |
|
T = np.array(CAMERA_DICT[motion_list[0]]["T"]) |
|
RT = get_camera_motion(angle, T, speed, length) |
|
|
|
trajs=[] |
|
for cp in RT.tolist(): |
|
traj=[fx,fy,cx,cy,0,0] |
|
traj.extend(cp[0]) |
|
traj.extend(cp[1]) |
|
traj.extend(cp[2]) |
|
traj.extend([0,0,0,1]) |
|
trajs.append(traj) |
|
|
|
cam_params = np.array([[float(x) for x in pose] for pose in trajs]) |
|
cam_params = np.concatenate([np.zeros_like(cam_params[:, :1]), cam_params], 1) |
|
control_camera_video = process_pose_params(cam_params, width=width, height=height) |
|
control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0).to(device=comfy.model_management.intermediate_device()) |
|
|
|
control_camera_video = torch.concat( |
|
[ |
|
torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2), |
|
control_camera_video[:, :, 1:] |
|
], dim=2 |
|
).transpose(1, 2) |
|
|
|
|
|
b, f, c, h, w = control_camera_video.shape |
|
control_camera_video = control_camera_video.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3) |
|
control_camera_video = control_camera_video.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2) |
|
|
|
return (control_camera_video, width, height, length) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"WanCameraEmbedding": WanCameraEmbedding, |
|
} |
|
|