|
|
|
|
|
class CLIPTextEncodeControlnet: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"clip": ("CLIP", ), "conditioning": ("CONDITIONING", ), "text": ("STRING", {"multiline": True, "dynamicPrompts": True})}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "_for_testing/conditioning" |
|
|
|
def encode(self, clip, conditioning, text): |
|
tokens = clip.tokenize(text) |
|
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) |
|
c = [] |
|
for t in conditioning: |
|
n = [t[0], t[1].copy()] |
|
n[1]['cross_attn_controlnet'] = cond |
|
n[1]['pooled_output_controlnet'] = pooled |
|
c.append(n) |
|
return (c, ) |
|
|
|
class T5TokenizerOptions: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"clip": ("CLIP", ), |
|
"min_padding": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}), |
|
"min_length": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}), |
|
} |
|
} |
|
|
|
CATEGORY = "_for_testing/conditioning" |
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "set_options" |
|
|
|
def set_options(self, clip, min_padding, min_length): |
|
clip = clip.clone() |
|
for t5_type in ["t5xxl", "pile_t5xl", "t5base", "mt5xl", "umt5xxl"]: |
|
clip.set_tokenizer_option("{}_min_padding".format(t5_type), min_padding) |
|
clip.set_tokenizer_option("{}_min_length".format(t5_type), min_length) |
|
|
|
return (clip, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"CLIPTextEncodeControlnet": CLIPTextEncodeControlnet, |
|
"T5TokenizerOptions": T5TokenizerOptions, |
|
} |
|
|