|
|
|
import torch |
|
import torch.fft as fft |
|
|
|
|
|
def Fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20): |
|
""" |
|
Apply frequency-dependent scaling to an image tensor using Fourier transforms. |
|
|
|
Parameters: |
|
x: Input tensor of shape (B, C, H, W) |
|
scale_low: Scaling factor for low-frequency components (default: 1.0) |
|
scale_high: Scaling factor for high-frequency components (default: 1.5) |
|
freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20) |
|
|
|
Returns: |
|
x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied. |
|
""" |
|
|
|
dtype, device = x.dtype, x.device |
|
|
|
|
|
x = x.to(torch.float32) |
|
|
|
|
|
x_freq = fft.fftn(x, dim=(-2, -1)) |
|
x_freq = fft.fftshift(x_freq, dim=(-2, -1)) |
|
|
|
|
|
mask = torch.ones(x_freq.shape, device=device) * scale_high |
|
m = mask |
|
for d in range(len(x_freq.shape) - 2): |
|
dim = d + 2 |
|
cc = x_freq.shape[dim] // 2 |
|
f_c = min(freq_cutoff, cc) |
|
m = m.narrow(dim, cc - f_c, f_c * 2) |
|
|
|
|
|
m[:] = scale_low |
|
|
|
|
|
x_freq = x_freq * mask |
|
|
|
|
|
x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) |
|
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real |
|
|
|
|
|
x_filtered = x_filtered.to(dtype) |
|
|
|
return x_filtered |
|
|
|
|
|
class FreSca: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ("MODEL",), |
|
"scale_low": ("FLOAT", {"default": 1.0, "min": 0, "max": 10, "step": 0.01, |
|
"tooltip": "Scaling factor for low-frequency components"}), |
|
"scale_high": ("FLOAT", {"default": 1.25, "min": 0, "max": 10, "step": 0.01, |
|
"tooltip": "Scaling factor for high-frequency components"}), |
|
"freq_cutoff": ("INT", {"default": 20, "min": 1, "max": 10000, "step": 1, |
|
"tooltip": "Number of frequency indices around center to consider as low-frequency"}), |
|
} |
|
} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
CATEGORY = "_for_testing" |
|
DESCRIPTION = "Applies frequency-dependent scaling to the guidance" |
|
def patch(self, model, scale_low, scale_high, freq_cutoff): |
|
def custom_cfg_function(args): |
|
conds_out = args["conds_out"] |
|
if len(conds_out) <= 1 or None in args["conds"][:2]: |
|
return conds_out |
|
cond = conds_out[0] |
|
uncond = conds_out[1] |
|
|
|
guidance = cond - uncond |
|
filtered_guidance = Fourier_filter( |
|
guidance, |
|
scale_low=scale_low, |
|
scale_high=scale_high, |
|
freq_cutoff=freq_cutoff, |
|
) |
|
filtered_cond = filtered_guidance + uncond |
|
|
|
return [filtered_cond, uncond] + conds_out[2:] |
|
|
|
m = model.clone() |
|
m.set_model_sampler_pre_cfg_function(custom_cfg_function) |
|
|
|
return (m,) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"FreSca": FreSca, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"FreSca": "FreSca", |
|
} |
|
|