|
from __future__ import annotations |
|
|
|
import nodes |
|
import folder_paths |
|
from comfy.cli_args import args |
|
|
|
from PIL import Image |
|
from PIL.PngImagePlugin import PngInfo |
|
|
|
import numpy as np |
|
import json |
|
import os |
|
import re |
|
from io import BytesIO |
|
from inspect import cleandoc |
|
import torch |
|
import comfy.utils |
|
|
|
from comfy.comfy_types import FileLocator, IO |
|
from server import PromptServer |
|
|
|
MAX_RESOLUTION = nodes.MAX_RESOLUTION |
|
|
|
class ImageCrop: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": ("IMAGE",), |
|
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), |
|
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), |
|
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), |
|
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), |
|
}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "crop" |
|
|
|
CATEGORY = "image/transform" |
|
|
|
def crop(self, image, width, height, x, y): |
|
x = min(x, image.shape[2] - 1) |
|
y = min(y, image.shape[1] - 1) |
|
to_x = width + x |
|
to_y = height + y |
|
img = image[:,y:to_y, x:to_x, :] |
|
return (img,) |
|
|
|
class RepeatImageBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": ("IMAGE",), |
|
"amount": ("INT", {"default": 1, "min": 1, "max": 4096}), |
|
}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "repeat" |
|
|
|
CATEGORY = "image/batch" |
|
|
|
def repeat(self, image, amount): |
|
s = image.repeat((amount, 1,1,1)) |
|
return (s,) |
|
|
|
class ImageFromBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": ("IMAGE",), |
|
"batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}), |
|
"length": ("INT", {"default": 1, "min": 1, "max": 4096}), |
|
}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "frombatch" |
|
|
|
CATEGORY = "image/batch" |
|
|
|
def frombatch(self, image, batch_index, length): |
|
s_in = image |
|
batch_index = min(s_in.shape[0] - 1, batch_index) |
|
length = min(s_in.shape[0] - batch_index, length) |
|
s = s_in[batch_index:batch_index + length].clone() |
|
return (s,) |
|
|
|
|
|
class ImageAddNoise: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": ("IMAGE",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}), |
|
"strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "repeat" |
|
|
|
CATEGORY = "image" |
|
|
|
def repeat(self, image, seed, strength): |
|
generator = torch.manual_seed(seed) |
|
s = torch.clip((image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)), min=0.0, max=1.0) |
|
return (s,) |
|
|
|
class SaveAnimatedWEBP: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
self.prefix_append = "" |
|
|
|
methods = {"default": 4, "fastest": 0, "slowest": 6} |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"images": ("IMAGE", ), |
|
"filename_prefix": ("STRING", {"default": "ComfyUI"}), |
|
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), |
|
"lossless": ("BOOLEAN", {"default": True}), |
|
"quality": ("INT", {"default": 80, "min": 0, "max": 100}), |
|
"method": (list(s.methods.keys()),), |
|
|
|
}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save_images" |
|
|
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "image/animation" |
|
|
|
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None): |
|
method = self.methods.get(method) |
|
filename_prefix += self.prefix_append |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) |
|
results: list[FileLocator] = [] |
|
pil_images = [] |
|
for image in images: |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
pil_images.append(img) |
|
|
|
metadata = pil_images[0].getexif() |
|
if not args.disable_metadata: |
|
if prompt is not None: |
|
metadata[0x0110] = "prompt:{}".format(json.dumps(prompt)) |
|
if extra_pnginfo is not None: |
|
inital_exif = 0x010f |
|
for x in extra_pnginfo: |
|
metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x])) |
|
inital_exif -= 1 |
|
|
|
if num_frames == 0: |
|
num_frames = len(pil_images) |
|
|
|
c = len(pil_images) |
|
for i in range(0, c, num_frames): |
|
file = f"{filename}_{counter:05}_.webp" |
|
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method) |
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
counter += 1 |
|
|
|
animated = num_frames != 1 |
|
return { "ui": { "images": results, "animated": (animated,) } } |
|
|
|
class SaveAnimatedPNG: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
self.prefix_append = "" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"images": ("IMAGE", ), |
|
"filename_prefix": ("STRING", {"default": "ComfyUI"}), |
|
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), |
|
"compress_level": ("INT", {"default": 4, "min": 0, "max": 9}) |
|
}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save_images" |
|
|
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "image/animation" |
|
|
|
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): |
|
filename_prefix += self.prefix_append |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) |
|
results = list() |
|
pil_images = [] |
|
for image in images: |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
pil_images.append(img) |
|
|
|
metadata = None |
|
if not args.disable_metadata: |
|
metadata = PngInfo() |
|
if prompt is not None: |
|
metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True) |
|
|
|
file = f"{filename}_{counter:05}_.png" |
|
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:]) |
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
|
|
return { "ui": { "images": results, "animated": (True,)} } |
|
|
|
class SVG: |
|
""" |
|
Stores SVG representations via a list of BytesIO objects. |
|
""" |
|
def __init__(self, data: list[BytesIO]): |
|
self.data = data |
|
|
|
def combine(self, other: 'SVG') -> 'SVG': |
|
return SVG(self.data + other.data) |
|
|
|
@staticmethod |
|
def combine_all(svgs: list['SVG']) -> 'SVG': |
|
all_svgs_list: list[BytesIO] = [] |
|
for svg_item in svgs: |
|
all_svgs_list.extend(svg_item.data) |
|
return SVG(all_svgs_list) |
|
|
|
|
|
class ImageStitch: |
|
"""Upstreamed from https://github.com/kijai/ComfyUI-KJNodes""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image1": ("IMAGE",), |
|
"direction": (["right", "down", "left", "up"], {"default": "right"}), |
|
"match_image_size": ("BOOLEAN", {"default": True}), |
|
"spacing_width": ( |
|
"INT", |
|
{"default": 0, "min": 0, "max": 1024, "step": 2}, |
|
), |
|
"spacing_color": ( |
|
["white", "black", "red", "green", "blue"], |
|
{"default": "white"}, |
|
), |
|
}, |
|
"optional": { |
|
"image2": ("IMAGE",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "stitch" |
|
CATEGORY = "image/transform" |
|
DESCRIPTION = """ |
|
Stitches image2 to image1 in the specified direction. |
|
If image2 is not provided, returns image1 unchanged. |
|
Optional spacing can be added between images. |
|
""" |
|
|
|
def stitch( |
|
self, |
|
image1, |
|
direction, |
|
match_image_size, |
|
spacing_width, |
|
spacing_color, |
|
image2=None, |
|
): |
|
if image2 is None: |
|
return (image1,) |
|
|
|
|
|
if image1.shape[0] != image2.shape[0]: |
|
max_batch = max(image1.shape[0], image2.shape[0]) |
|
if image1.shape[0] < max_batch: |
|
image1 = torch.cat( |
|
[image1, image1[-1:].repeat(max_batch - image1.shape[0], 1, 1, 1)] |
|
) |
|
if image2.shape[0] < max_batch: |
|
image2 = torch.cat( |
|
[image2, image2[-1:].repeat(max_batch - image2.shape[0], 1, 1, 1)] |
|
) |
|
|
|
|
|
if match_image_size: |
|
h1, w1 = image1.shape[1:3] |
|
h2, w2 = image2.shape[1:3] |
|
aspect_ratio = w2 / h2 |
|
|
|
if direction in ["left", "right"]: |
|
target_h, target_w = h1, int(h1 * aspect_ratio) |
|
else: |
|
target_w, target_h = w1, int(w1 / aspect_ratio) |
|
|
|
image2 = comfy.utils.common_upscale( |
|
image2.movedim(-1, 1), target_w, target_h, "lanczos", "disabled" |
|
).movedim(1, -1) |
|
|
|
color_map = { |
|
"white": 1.0, |
|
"black": 0.0, |
|
"red": (1.0, 0.0, 0.0), |
|
"green": (0.0, 1.0, 0.0), |
|
"blue": (0.0, 0.0, 1.0), |
|
} |
|
|
|
color_val = color_map[spacing_color] |
|
|
|
|
|
if not match_image_size: |
|
h1, w1 = image1.shape[1:3] |
|
h2, w2 = image2.shape[1:3] |
|
pad_value = 0.0 |
|
if not isinstance(color_val, tuple): |
|
pad_value = color_val |
|
|
|
if direction in ["left", "right"]: |
|
|
|
if h1 != h2: |
|
target_h = max(h1, h2) |
|
if h1 < target_h: |
|
pad_h = target_h - h1 |
|
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2 |
|
image1 = torch.nn.functional.pad(image1, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=pad_value) |
|
if h2 < target_h: |
|
pad_h = target_h - h2 |
|
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2 |
|
image2 = torch.nn.functional.pad(image2, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=pad_value) |
|
else: |
|
|
|
if w1 != w2: |
|
target_w = max(w1, w2) |
|
if w1 < target_w: |
|
pad_w = target_w - w1 |
|
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2 |
|
image1 = torch.nn.functional.pad(image1, (0, 0, pad_left, pad_right), mode='constant', value=pad_value) |
|
if w2 < target_w: |
|
pad_w = target_w - w2 |
|
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2 |
|
image2 = torch.nn.functional.pad(image2, (0, 0, pad_left, pad_right), mode='constant', value=pad_value) |
|
|
|
|
|
if image1.shape[-1] != image2.shape[-1]: |
|
max_channels = max(image1.shape[-1], image2.shape[-1]) |
|
if image1.shape[-1] < max_channels: |
|
image1 = torch.cat( |
|
[ |
|
image1, |
|
torch.ones( |
|
*image1.shape[:-1], |
|
max_channels - image1.shape[-1], |
|
device=image1.device, |
|
), |
|
], |
|
dim=-1, |
|
) |
|
if image2.shape[-1] < max_channels: |
|
image2 = torch.cat( |
|
[ |
|
image2, |
|
torch.ones( |
|
*image2.shape[:-1], |
|
max_channels - image2.shape[-1], |
|
device=image2.device, |
|
), |
|
], |
|
dim=-1, |
|
) |
|
|
|
|
|
if spacing_width > 0: |
|
spacing_width = spacing_width + (spacing_width % 2) |
|
|
|
if direction in ["left", "right"]: |
|
spacing_shape = ( |
|
image1.shape[0], |
|
max(image1.shape[1], image2.shape[1]), |
|
spacing_width, |
|
image1.shape[-1], |
|
) |
|
else: |
|
spacing_shape = ( |
|
image1.shape[0], |
|
spacing_width, |
|
max(image1.shape[2], image2.shape[2]), |
|
image1.shape[-1], |
|
) |
|
|
|
spacing = torch.full(spacing_shape, 0.0, device=image1.device) |
|
if isinstance(color_val, tuple): |
|
for i, c in enumerate(color_val): |
|
if i < spacing.shape[-1]: |
|
spacing[..., i] = c |
|
if spacing.shape[-1] == 4: |
|
spacing[..., 3] = 1.0 |
|
else: |
|
spacing[..., : min(3, spacing.shape[-1])] = color_val |
|
if spacing.shape[-1] == 4: |
|
spacing[..., 3] = 1.0 |
|
|
|
|
|
images = [image2, image1] if direction in ["left", "up"] else [image1, image2] |
|
if spacing_width > 0: |
|
images.insert(1, spacing) |
|
|
|
concat_dim = 2 if direction in ["left", "right"] else 1 |
|
return (torch.cat(images, dim=concat_dim),) |
|
|
|
class ResizeAndPadImage: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"target_width": ("INT", { |
|
"default": 512, |
|
"min": 1, |
|
"max": MAX_RESOLUTION, |
|
"step": 1 |
|
}), |
|
"target_height": ("INT", { |
|
"default": 512, |
|
"min": 1, |
|
"max": MAX_RESOLUTION, |
|
"step": 1 |
|
}), |
|
"padding_color": (["white", "black"],), |
|
"interpolation": (["area", "bicubic", "nearest-exact", "bilinear", "lanczos"],), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "resize_and_pad" |
|
CATEGORY = "image/transform" |
|
|
|
def resize_and_pad(self, image, target_width, target_height, padding_color, interpolation): |
|
batch_size, orig_height, orig_width, channels = image.shape |
|
|
|
scale_w = target_width / orig_width |
|
scale_h = target_height / orig_height |
|
scale = min(scale_w, scale_h) |
|
|
|
new_width = int(orig_width * scale) |
|
new_height = int(orig_height * scale) |
|
|
|
image_permuted = image.permute(0, 3, 1, 2) |
|
|
|
resized = comfy.utils.common_upscale(image_permuted, new_width, new_height, interpolation, "disabled") |
|
|
|
pad_value = 0.0 if padding_color == "black" else 1.0 |
|
padded = torch.full( |
|
(batch_size, channels, target_height, target_width), |
|
pad_value, |
|
dtype=image.dtype, |
|
device=image.device |
|
) |
|
|
|
y_offset = (target_height - new_height) // 2 |
|
x_offset = (target_width - new_width) // 2 |
|
|
|
padded[:, :, y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized |
|
|
|
output = padded.permute(0, 2, 3, 1) |
|
return (output,) |
|
|
|
class SaveSVGNode: |
|
""" |
|
Save SVG files on disk. |
|
""" |
|
|
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
self.prefix_append = "" |
|
|
|
RETURN_TYPES = () |
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
FUNCTION = "save_svg" |
|
CATEGORY = "image/save" |
|
OUTPUT_NODE = True |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"svg": ("SVG",), |
|
"filename_prefix": ("STRING", {"default": "svg/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}) |
|
}, |
|
"hidden": { |
|
"prompt": "PROMPT", |
|
"extra_pnginfo": "EXTRA_PNGINFO" |
|
} |
|
} |
|
|
|
def save_svg(self, svg: SVG, filename_prefix="svg/ComfyUI", prompt=None, extra_pnginfo=None): |
|
filename_prefix += self.prefix_append |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) |
|
results = list() |
|
|
|
|
|
metadata_dict = {} |
|
if prompt is not None: |
|
metadata_dict["prompt"] = prompt |
|
if extra_pnginfo is not None: |
|
metadata_dict.update(extra_pnginfo) |
|
|
|
|
|
metadata_json = json.dumps(metadata_dict, indent=2) if metadata_dict else None |
|
|
|
for batch_number, svg_bytes in enumerate(svg.data): |
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) |
|
file = f"{filename_with_batch_num}_{counter:05}_.svg" |
|
|
|
|
|
svg_bytes.seek(0) |
|
svg_content = svg_bytes.read().decode('utf-8') |
|
|
|
|
|
if metadata_json: |
|
|
|
metadata_element = f""" <metadata> |
|
<![CDATA[ |
|
{metadata_json} |
|
]]> |
|
</metadata> |
|
""" |
|
|
|
def replacement(match): |
|
|
|
return match.group(1) + '\n' + metadata_element |
|
|
|
|
|
svg_content = re.sub(r'(<svg[^>]*>)', replacement, svg_content, flags=re.UNICODE) |
|
|
|
|
|
with open(os.path.join(full_output_folder, file), 'wb') as svg_file: |
|
svg_file.write(svg_content.encode('utf-8')) |
|
|
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
counter += 1 |
|
return { "ui": { "images": results } } |
|
|
|
class GetImageSize: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": (IO.IMAGE,), |
|
}, |
|
"hidden": { |
|
"unique_id": "UNIQUE_ID", |
|
} |
|
} |
|
|
|
RETURN_TYPES = (IO.INT, IO.INT, IO.INT) |
|
RETURN_NAMES = ("width", "height", "batch_size") |
|
FUNCTION = "get_size" |
|
|
|
CATEGORY = "image" |
|
DESCRIPTION = """Returns width and height of the image, and passes it through unchanged.""" |
|
|
|
def get_size(self, image, unique_id=None) -> tuple[int, int]: |
|
height = image.shape[1] |
|
width = image.shape[2] |
|
batch_size = image.shape[0] |
|
|
|
|
|
if unique_id: |
|
PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", unique_id) |
|
|
|
return width, height, batch_size |
|
|
|
class ImageRotate: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": (IO.IMAGE,), |
|
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],), |
|
}} |
|
RETURN_TYPES = (IO.IMAGE,) |
|
FUNCTION = "rotate" |
|
|
|
CATEGORY = "image/transform" |
|
|
|
def rotate(self, image, rotation): |
|
rotate_by = 0 |
|
if rotation.startswith("90"): |
|
rotate_by = 1 |
|
elif rotation.startswith("180"): |
|
rotate_by = 2 |
|
elif rotation.startswith("270"): |
|
rotate_by = 3 |
|
|
|
image = torch.rot90(image, k=rotate_by, dims=[2, 1]) |
|
return (image,) |
|
|
|
class ImageFlip: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": (IO.IMAGE,), |
|
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],), |
|
}} |
|
RETURN_TYPES = (IO.IMAGE,) |
|
FUNCTION = "flip" |
|
|
|
CATEGORY = "image/transform" |
|
|
|
def flip(self, image, flip_method): |
|
if flip_method.startswith("x"): |
|
image = torch.flip(image, dims=[1]) |
|
elif flip_method.startswith("y"): |
|
image = torch.flip(image, dims=[2]) |
|
|
|
return (image,) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"ImageCrop": ImageCrop, |
|
"RepeatImageBatch": RepeatImageBatch, |
|
"ImageFromBatch": ImageFromBatch, |
|
"ImageAddNoise": ImageAddNoise, |
|
"SaveAnimatedWEBP": SaveAnimatedWEBP, |
|
"SaveAnimatedPNG": SaveAnimatedPNG, |
|
"SaveSVGNode": SaveSVGNode, |
|
"ImageStitch": ImageStitch, |
|
"ResizeAndPadImage": ResizeAndPadImage, |
|
"GetImageSize": GetImageSize, |
|
"ImageRotate": ImageRotate, |
|
"ImageFlip": ImageFlip, |
|
} |
|
|