Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,374 Bytes
dc155d4 879ee4e dc155d4 b09f6a2 dc155d4 988720a dc155d4 949010c defc71e 949010c defc71e 949010c 82d7cc1 dc155d4 988720a dc155d4 988720a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
"""
"""
from typing import Any
from typing import Callable
from typing import ParamSpec
import spaces
import torch
from torch.utils._pytree import tree_map_only
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from torchao.quantization import Int8WeightOnlyConfig
from optimization_utils import capture_component_call
from optimization_utils import aoti_compile
from optimization_utils import ZeroGPUCompiledModel
from optimization_utils import drain_module_parameters
P = ParamSpec('P')
TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21)
TRANSFORMER_DYNAMIC_SHAPES = {
'hidden_states': {
2: TRANSFORMER_NUM_FRAMES_DIM,
},
}
INDUCTOR_CONFIGS = {
'conv_1x1_as_mm': True,
'epilogue_fusion': False,
'coordinate_descent_tuning': True,
'coordinate_descent_check_all_directions': True,
'max_autotune': True,
'triton.cudagraphs': True,
}
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
@spaces.GPU(duration=1500)
def compile_transformer():
# pipeline.load_lora_weights(
# "Kijai/WanVideo_comfy",
# weight_name="Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank128_bf16.safetensors",
# adapter_name="lightning"
# )
# kwargs_lora = {}
# kwargs_lora["load_into_transformer_2"] = True
# pipeline.load_lora_weights(
# "Kijai/WanVideo_comfy",
# weight_name="Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank128_bf16.safetensors",
# #weight_name="Wan22-Lightning/Wan2.2-Lightning_T2V-A14B-4steps-lora_LOW_fp16.safetensors",
# adapter_name="lightning_2", **kwargs_lora
# )
# pipeline.set_adapters(["lightning", "lightning_2"], adapter_weights=[1., 1.])
# pipeline.fuse_lora(adapter_names=["lightning"], lora_scale=3., components=["transformer"])
# pipeline.fuse_lora(adapter_names=["lightning_2"], lora_scale=1., components=["transformer_2"])
# pipeline.unload_lora_weights()
pipeline.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank128_bf16.safetensors",
adapter_name="lightning"
)
kwargs_lora = {}
kwargs_lora["load_into_transformer_2"] = True
# pipeline.load_lora_weights(
# #"drozbay/Wan2.2_A14B_lora_extract",
# "Kijai/WanVideo_comfy",
# #weight_name="MTVCrafter/Wan2_1_MTV-Crafter_motion_adapter_bf16.safetensors",
# #weight_name="Skyreels/Wan2_1_Skyreels-v2-T2V-720P_LoRA_rank_64_fp16.safetensors",
# #weight_name="Pusa/Wan21_PusaV1_LoRA_14B_rank512_bf16.safetensors",
# weight_name="Wan22-Lightning/Wan2.2-Lightning_T2V-A14B-4steps-lora_LOW_fp16.safetensors",
# adapter_name="lightning_2", **kwargs_lora
# )
pipeline.load_lora_weights(
#"drozbay/Wan2.2_A14B_lora_extract",
"lightx2v/Wan2.2-Lightning",
#weight_name="MTVCrafter/Wan2_1_MTV-Crafter_motion_adapter_bf16.safetensors",
#weight_name="Skyreels/Wan2_1_Skyreels-v2-T2V-720P_LoRA_rank_64_fp16.safetensors",
weight_name="Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1/low_noise_model.safetensors",
#weight_name="Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1/low_noise_model.safetensors",
adapter_name="lightning_2", **kwargs_lora
)
# pipeline.load_lora_weights(
# #"drozbay/Wan2.2_A14B_lora_extract",
# "ostris/wan22_i2v_14b_orbit_shot_lora",
# #weight_name="MTVCrafter/Wan2_1_MTV-Crafter_motion_adapter_bf16.safetensors",
# #weight_name="Skyreels/Wan2_1_Skyreels-v2-T2V-720P_LoRA_rank_64_fp16.safetensors",
# weight_name="wan22_14b_i2v_orbit_low_noise.safetensors",
# #weight_name="Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1/low_noise_model.safetensors",
# adapter_name="lightning_200", **kwargs_lora
# )
pipeline.set_adapters(["lightning", "lightning_2"], adapter_weights=[1., 1.])
pipeline.fuse_lora(adapter_names=["lightning"], lora_scale=3., components=["transformer"])
pipeline.fuse_lora(adapter_names=["lightning_2"], lora_scale=1., components=["transformer_2"])
pipeline.unload_lora_weights()
with capture_component_call(pipeline, 'transformer') as call:
pipeline(*args, **kwargs)
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
hidden_states: torch.Tensor = call.kwargs['hidden_states']
hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
if hidden_states.shape[-1] > hidden_states.shape[-2]:
hidden_states_landscape = hidden_states
hidden_states_portrait = hidden_states_transposed
else:
hidden_states_landscape = hidden_states_transposed
hidden_states_portrait = hidden_states
exported_landscape_1 = torch.export.export(
mod=pipeline.transformer,
args=call.args,
kwargs=call.kwargs | {'hidden_states': hidden_states_landscape},
dynamic_shapes=dynamic_shapes,
)
exported_portrait_2 = torch.export.export(
mod=pipeline.transformer_2,
args=call.args,
kwargs=call.kwargs | {'hidden_states': hidden_states_portrait},
dynamic_shapes=dynamic_shapes,
)
compiled_landscape_1 = aoti_compile(exported_landscape_1, INDUCTOR_CONFIGS)
compiled_portrait_2 = aoti_compile(exported_portrait_2, INDUCTOR_CONFIGS)
compiled_landscape_2 = ZeroGPUCompiledModel(compiled_landscape_1.archive_file, compiled_portrait_2.weights)
compiled_portrait_1 = ZeroGPUCompiledModel(compiled_portrait_2.archive_file, compiled_landscape_1.weights)
return (
compiled_landscape_1,
compiled_landscape_2,
compiled_portrait_1,
compiled_portrait_2,
)
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
cl1, cl2, cp1, cp2 = compile_transformer()
def combined_transformer_1(*args, **kwargs):
hidden_states: torch.Tensor = kwargs['hidden_states']
if hidden_states.shape[-1] > hidden_states.shape[-2]:
return cl1(*args, **kwargs)
else:
return cp1(*args, **kwargs)
def combined_transformer_2(*args, **kwargs):
hidden_states: torch.Tensor = kwargs['hidden_states']
if hidden_states.shape[-1] > hidden_states.shape[-2]:
return cl2(*args, **kwargs)
else:
return cp2(*args, **kwargs)
pipeline.transformer.forward = combined_transformer_1
drain_module_parameters(pipeline.transformer)
pipeline.transformer_2.forward = combined_transformer_2
drain_module_parameters(pipeline.transformer_2) |