Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,600 Bytes
dc155d4 7ff7c14 dc155d4 fe70d6a dc155d4 048bf77 dc155d4 048bf77 dc155d4 048bf77 dc155d4 048bf77 dc155d4 fe70d6a 61a3032 b3e3a26 61a3032 b3e3a26 61a3032 a3f7df4 2017e8d cdfacd7 3a5ca01 34048b1 cc09d22 2294c95 3a5ca01 8565904 f9c2cbe c31be82 1e45d52 cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 5ce60af cc09d22 374c7dc cc09d22 5ce60af cc09d22 5ce60af cc09d22 c31be82 5ce60af 78f826c cc09d22 f9c2cbe cc09d22 1e45d52 3a5ca01 34048b1 3a5ca01 34048b1 3a5ca01 34048b1 3a5ca01 34048b1 3a5ca01 34048b1 3a5ca01 34048b1 3a5ca01 34048b1 3a5ca01 34048b1 cdfacd7 2017e8d cdfacd7 2017e8d cdfacd7 2017e8d cdfacd7 2017e8d cdfacd7 2017e8d cdfacd7 2017e8d cdfacd7 2017e8d cdfacd7 b3e3a26 048bf77 736f1ae dc155d4 0f291d9 048bf77 dc155d4 048bf77 dc155d4 048bf77 dc155d4 048bf77 fe70d6a dc155d4 0f291d9 dc155d4 0f291d9 dc155d4 048bf77 dc155d4 048bf77 dc155d4 048bf77 dc155d4 048bf77 dc155d4 048bf77 dc155d4 048bf77 dc155d4 048bf77 dc155d4 34048b1 dc155d4 0f291d9 cb05541 dc155d4 0f291d9 048bf77 dc155d4 0f291d9 048bf77 dc155d4 f1ee2b7 048bf77 dc155d4 fe70d6a f945a0d fe70d6a 5ab6322 fe70d6a dc155d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"')
# Actual demo code
import spaces
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
# pipe = WanPipeline.from_pretrained(MODEL_ID,
# transformer=WanTransformer3DModel.from_pretrained('rahul7star/wan2.2',
# subfolder='Wan2.2-T2V-A14B-Diffusers-BF16/transformer',
# torch_dtype=torch.bfloat16,
# device_map='cuda',
# ),
# transformer_2=WanTransformer3DModel.from_pretrained('rahul7star/wan2.2',
# subfolder='Wan2.2-T2V-A14B-Diffusers-BF16/transformer_2',
# torch_dtype=torch.bfloat16,
# device_map='cuda',
# ),
# vae=vae,
# torch_dtype=torch.bfloat16,
# ).to('cuda')
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/WanText")
from huggingface_hub import HfApi, upload_file
import os
import uuid
import logging
import os
import uuid
import logging
from datetime import datetime
from huggingface_hub import HfApi, upload_file
import subprocess
import shutil
import tempfile
import logging
import subprocess
import tempfile
import logging
import shutil
import os
from huggingface_hub import HfApi, upload_file
from datetime import datetime
import uuid
import os
import tempfile
import logging
import subprocess
import uuid
import pandas as pd
from datetime import datetime
from huggingface_hub import upload_file, hf_hub_download
HF_MODEL = "rahul7star/WanText" # replace with actual model repo
HF_DATASET_REPO = "rahul7star/Wan-video"
import os
import uuid
import tempfile
import logging
import subprocess
from datetime import datetime
import pandas as pd
from datasets import Dataset, Features, Value, Video
from huggingface_hub import upload_file, hf_hub_download
import os
import uuid
import tempfile
import logging
import subprocess
from datetime import datetime
import pandas as pd
from datasets import Dataset, Features, Value, Video
from huggingface_hub import upload_file, hf_hub_download
def upscale_and_upload_4k00(input_video_path: str, summary_text: str) -> str:
"""
Upscale a video to 4K, upload to both model + dataset repos.
Model repo: keeps videos + summary.txt in dated folders.
Dataset repo: flat structure with growing metadata.csv (Video|Text|Date).
Args:
input_video_path (str): Path to original video.
summary_text (str): Summary text.
Returns:
str: Hugging Face folder path inside model repo.
"""
logging.info(f"Upscaling video to 4K for upload: {input_video_path}")
# Temporary upscaled file
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
upscaled_path = tmp_upscaled.name
# FFmpeg upscale command
cmd = [
"ffmpeg",
"-i", input_video_path,
"-vf", "scale=3840:2160:flags=lanczos",
"-c:v", "libx264",
"-crf", "18",
"-preset", "slow",
"-y",
upscaled_path,
]
try:
subprocess.run(cmd, check=True, capture_output=True)
logging.info(f"✅ Upscaled video created at: {upscaled_path}")
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
raise
# Create date/unique folder for model repo
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"Upload-4K-{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
video_filename = os.path.basename(input_video_path)
video_hf_path_model = f"{hf_folder}/{video_filename}"
summary_hf_path_model = f"{hf_folder}/summary.txt"
token = os.environ.get("HUGGINGFACE_HUB_TOKEN")
def safe_upload(path, repo_id, repo_type, path_in_repo, label):
try:
upload_file(
path_or_fileobj=path,
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type=repo_type,
token=token,
)
logging.info(f"✅ Uploaded {label} to {repo_type} repo {repo_id}: {path_in_repo}")
except Exception as e:
logging.error(f"❌ Failed to upload {label} to {repo_type} repo {repo_id}: {e}")
# ----------------------
# Upload to MODEL repo
# ----------------------
safe_upload(upscaled_path, HF_MODEL, "model", video_hf_path_model, "4K video")
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
safe_upload(summary_file, HF_MODEL, "model", summary_hf_path_model, "summary")
# ----------------------
# Upload to DATASET repo (flat, growing metadata.csv)
# ----------------------
try:
# Upload video to dataset repo root
safe_upload(upscaled_path, HF_DATASET_REPO, "dataset", video_filename, "4K video")
# Build absolute video URL for metadata
video_url = f"https://huggingface.co/datasets/{HF_DATASET_REPO}/resolve/main/{video_filename}"
# Load existing metadata.csv if exists
rows = []
try:
existing_csv = hf_hub_download(
repo_id=HF_DATASET_REPO,
repo_type="dataset",
filename="test.csv",
token=token,
)
rows = pd.read_csv(existing_csv).to_dict("records")
except Exception:
logging.info("ℹ️ No existing metadata.csv found, creating new one.")
# Append new row
rows.append({"video": video_url, "text": summary_text, "date": today_str})
df = pd.DataFrame(rows, columns=["video", "text", "date"])
# Save and upload updated CSV
csv_path = tempfile.NamedTemporaryFile(delete=False, suffix=".csv").name
df.to_csv(csv_path, index=False)
safe_upload(csv_path, HF_DATASET_REPO, "dataset", "test.csv", "test.csv")
except Exception as e:
logging.error(f"❌ Dataset upload failed: {e}")
# Cleanup temp files
os.remove(upscaled_path)
os.remove(summary_file)
return hf_folder
def upscale_and_upload_4k(input_video_path: str, summary_text: str) -> str:
"""
Upscale a video to 4K and upload it to Hugging Face Hub without replacing the original file.
Args:
input_video_path (str): Path to the original video.
summary_text (str): Text summary to upload alongside the video.
Returns:
str: Hugging Face folder path where the video and summary were uploaded.
"""
logging.info(f"Upscaling video to 4K for upload: {input_video_path}")
# Create a temporary file for the upscaled video
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
upscaled_path = tmp_upscaled.name
# FFmpeg upscale command
cmd = [
"ffmpeg",
"-i", input_video_path,
"-vf", "scale=3840:2160:flags=lanczos",
"-c:v", "libx264",
"-crf", "18",
"-preset", "slow",
"-y",
upscaled_path,
]
try:
subprocess.run(cmd, check=True, capture_output=True)
logging.info(f"✅ Upscaled video created at: {upscaled_path}")
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
raise
# Create a date-based folder on HF
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"Upload-4K-{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
# Upload video
video_filename = os.path.basename(input_video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=upscaled_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")
# Upload summary.txt
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
# Cleanup temporary files
os.remove(upscaled_path)
os.remove(summary_file)
return hf_folder
def upload_to_hf(video_path, summary_text):
api = HfApi()
# Create a date-based folder (YYYY-MM-DD)
today_str = datetime.now().strftime("%Y-%m-%d")
date_folder = today_str
# Generate a unique subfolder for this upload
unique_subfolder = f"WanT2V-upload_{uuid.uuid4().hex[:8]}"
hf_folder = f"{date_folder}/{unique_subfolder}"
logging.info(f"Uploading files to HF folder: {hf_folder} in repo {HF_MODEL}")
# Upload video
video_filename = os.path.basename(video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=video_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded video to HF: {video_hf_path}")
# Upload summary.txt
summary_file = "/tmp/summary.txt"
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
return hf_folder
pipe = WanPipeline.from_pretrained(MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
vae=vae,
torch_dtype=torch.bfloat16,
).to('cuda')
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
optimize_pipeline_(pipe,
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
default_prompt_t2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
def get_duration(
prompt,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
steps,
seed,
randomize_seed,
progress,
):
return steps * 15
@spaces.GPU(duration=get_duration)
def generate_video(
prompt,
negative_prompt=default_negative_prompt,
duration_seconds = MAX_DURATION,
guidance_scale = 1,
guidance_scale_2 = 3,
steps = 4,
seed = 42,
randomize_seed = False,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate a video from a text prompt using the Wan 2.2 14B T2V model with Lightning LoRA.
This function takes an input prompt and generates a video animation based on the provided
prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Text-to-Video model with Lightning LoRA
for fast generation in 4-8 steps.
Args:
prompt (str): Text prompt describing the desired animation or motion.
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
Defaults to default_negative_prompt (contains unwanted visual artifacts).
duration_seconds (float, optional): Duration of the generated video in seconds.
Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
steps (int, optional): Number of inference steps. More steps = higher quality but slower.
Defaults to 4. Range: 1-30.
seed (int, optional): Random seed for reproducible results. Defaults to 42.
Range: 0 to MAX_SEED (2147483647).
randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
Defaults to False.
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
Returns:
tuple: A tuple containing:
- video_path (str): Path to the generated video file (.mp4)
- current_seed (int): The seed used for generation (useful when randomize_seed=True)
Raises:
gr.Error: If input_image is None (no image uploaded).
Note:
- The function automatically resizes the input image to the target dimensions
- Frame count is calculated as duration_seconds * FIXED_FPS (24)
- Output dimensions are adjusted to be multiples of MOD_VALUE (32)
- The function uses GPU acceleration via the @spaces.GPU decorator
- Generation time varies based on steps and duration (see get_duration function)
"""
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
output_frames_list = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
upscale_and_upload_4k(video_path, prompt)
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 T2V (14B) with Lightning LoRA")
gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Wan 2.2 Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
ui_inputs = [
prompt_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[
"POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.",
],
[
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
],
[
"A cinematic shot of a boat sailing on a calm sea at sunset.",
],
[
"Drone footage flying over a futuristic city with flying cars.",
],
],
inputs=[prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(mcp_server=True)
|