NER_mcp / app.py
root
bug ports
c4015e0
import gradio as gr
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
import json
tokenizer = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner")
model = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
def group_cat(entities):
categories = {}
for item in entities:
group = item.get('entity_group')
if group not in categories:
categories[group] = [item]
else:
categories[group].append(item)
return categories
def ner(text: str) -> str:
"""
Searches the input text for named entities and returns them organized by category.
Args:
text (str): The input text to analyze.
Returns:
str: A json string representing dictionary where each key is a named entity category (e.g., 'PER', 'ORG', 'LOC', etc.), and the corresponding value is a list of entities found in the text under that category.
"""
max_len = tokenizer.model_max_length
stride = 50
# Tokenizza con overflow per gestire testi lunghi
inputs = tokenizer(
text,
return_overflowing_tokens=True,
stride=stride,
max_length=max_len,
truncation=True,
return_offsets_mapping=True,
padding=False
)
all_entities = []
seen = set() # Per deduplicare (word, start, end)
for input_ids in inputs["input_ids"]:
chunk_text = tokenizer.decode(input_ids, skip_special_tokens=True)
chunk_entities = nlp(chunk_text)
for ent in chunk_entities:
key = (ent["word"], ent["start"], ent["end"])
if key not in seen:
seen.add(key)
all_entities.append(ent)
ner_results =group_cat(all_entities)
cleaned = {}
for category, items in ner_results.items():
cleaned[category] = {}
for ent in items:
cleaned[category][ent["word"]] = float(ent["score"])
dict_ner = json.dumps(cleaned, indent=2, separators=(',', ': '), ensure_ascii=False)
return dict_ner
# Create a standard Gradio interface
demo = gr.Interface(
fn=ner,
inputs=["text"],
outputs="text",
title="NER",
description="Detect named entity within the text in input using the model Babelscape/wikineural - This interface works as MCP server as well."
)
# Launch both the Gradio web interface and the MCP server
if __name__ == "__main__":
demo.launch(mcp_server=True)