|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
from transformers import pipeline |
|
import json |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner") |
|
model = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner") |
|
|
|
nlp = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
|
|
def group_cat(entities): |
|
categories = {} |
|
for item in entities: |
|
group = item.get('entity_group') |
|
if group not in categories: |
|
categories[group] = [item] |
|
else: |
|
categories[group].append(item) |
|
return categories |
|
|
|
|
|
|
|
|
|
def ner(text: str) -> str: |
|
""" |
|
Searches the input text for named entities and returns them organized by category. |
|
|
|
Args: |
|
text (str): The input text to analyze. |
|
|
|
Returns: |
|
str: A json string representing dictionary where each key is a named entity category (e.g., 'PER', 'ORG', 'LOC', etc.), and the corresponding value is a list of entities found in the text under that category. |
|
""" |
|
max_len = tokenizer.model_max_length |
|
stride = 50 |
|
|
|
|
|
inputs = tokenizer( |
|
text, |
|
return_overflowing_tokens=True, |
|
stride=stride, |
|
max_length=max_len, |
|
truncation=True, |
|
return_offsets_mapping=True, |
|
padding=False |
|
) |
|
|
|
all_entities = [] |
|
seen = set() |
|
|
|
for input_ids in inputs["input_ids"]: |
|
chunk_text = tokenizer.decode(input_ids, skip_special_tokens=True) |
|
chunk_entities = nlp(chunk_text) |
|
|
|
for ent in chunk_entities: |
|
key = (ent["word"], ent["start"], ent["end"]) |
|
if key not in seen: |
|
seen.add(key) |
|
all_entities.append(ent) |
|
|
|
|
|
ner_results =group_cat(all_entities) |
|
|
|
cleaned = {} |
|
for category, items in ner_results.items(): |
|
cleaned[category] = {} |
|
for ent in items: |
|
cleaned[category][ent["word"]] = float(ent["score"]) |
|
|
|
dict_ner = json.dumps(cleaned, indent=2, separators=(',', ': '), ensure_ascii=False) |
|
return dict_ner |
|
|
|
|
|
demo = gr.Interface( |
|
fn=ner, |
|
inputs=["text"], |
|
outputs="text", |
|
title="NER", |
|
description="Detect named entity within the text in input using the model Babelscape/wikineural - This interface works as MCP server as well." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(mcp_server=True) |