Spaces:
Sleeping
Sleeping
Commit
·
c10d8f3
1
Parent(s):
826cc00
fix: improve model loading with meta tensor handling and CPU fallbacks
Browse files- Use torch_dtype to avoid meta tensor issues
- Check for to_empty method for device placement
- Add fallback methods for robust CPU loading
app.py
CHANGED
|
@@ -7,17 +7,49 @@ from io import BytesIO
|
|
| 7 |
|
| 8 |
fashion_items = ['top', 'trousers', 'jumper']
|
| 9 |
|
| 10 |
-
# Load model and processor with
|
| 11 |
model_name = 'Marqo/marqo-fashionSigLIP'
|
| 12 |
|
| 13 |
# Force CPU usage to avoid device mapping issues
|
| 14 |
device = torch.device('cpu')
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 23 |
|
|
|
|
| 7 |
|
| 8 |
fashion_items = ['top', 'trousers', 'jumper']
|
| 9 |
|
| 10 |
+
# Load model and processor with proper meta tensor handling
|
| 11 |
model_name = 'Marqo/marqo-fashionSigLIP'
|
| 12 |
|
| 13 |
# Force CPU usage to avoid device mapping issues
|
| 14 |
device = torch.device('cpu')
|
| 15 |
|
| 16 |
+
# Handle meta tensor initialization properly
|
| 17 |
+
try:
|
| 18 |
+
# Load model with empty weights initialization to avoid meta tensor issues
|
| 19 |
+
model = AutoModel.from_pretrained(
|
| 20 |
+
model_name,
|
| 21 |
+
trust_remote_code=True,
|
| 22 |
+
torch_dtype=torch.float32
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Check if model has the to_empty method and use it for meta tensor initialization
|
| 26 |
+
if hasattr(model, 'model') and hasattr(model.model, 'to_empty'):
|
| 27 |
+
model.model.to_empty(device=device)
|
| 28 |
+
elif hasattr(model, 'to_empty'):
|
| 29 |
+
model.to_empty(device=device)
|
| 30 |
+
else:
|
| 31 |
+
# Fallback to regular to() method
|
| 32 |
+
model = model.to(device)
|
| 33 |
+
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Primary loading method failed: {e}")
|
| 36 |
+
# Fallback method - load with minimal configuration
|
| 37 |
+
try:
|
| 38 |
+
model = AutoModel.from_pretrained(
|
| 39 |
+
model_name,
|
| 40 |
+
trust_remote_code=True
|
| 41 |
+
)
|
| 42 |
+
# Move to CPU after loading
|
| 43 |
+
model = model.to(device)
|
| 44 |
+
except Exception as e2:
|
| 45 |
+
print(f"Fallback method also failed: {e2}")
|
| 46 |
+
# Last resort - try loading with low CPU memory usage
|
| 47 |
+
model = AutoModel.from_pretrained(
|
| 48 |
+
model_name,
|
| 49 |
+
trust_remote_code=True,
|
| 50 |
+
low_cpu_mem_usage=False # Disable to avoid accelerate issues
|
| 51 |
+
)
|
| 52 |
+
model = model.to(device)
|
| 53 |
|
| 54 |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 55 |
|