Spaces:
Sleeping
Sleeping
from argparse import ArgumentParser | |
from functools import lru_cache | |
from typing import List, Tuple | |
import cv2 | |
import numpy | |
from cv2.typing import Size | |
import facefusion.jobs.job_manager | |
import facefusion.jobs.job_store | |
import facefusion.processors.core as processors | |
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, video_manager, wording | |
from facefusion.common_helper import create_int_metavar | |
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url_by_provider | |
from facefusion.face_analyser import get_many_faces, get_one_face | |
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5 | |
from facefusion.face_masker import create_area_mask, create_box_mask, create_occlusion_mask, create_region_mask | |
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces | |
from facefusion.face_store import get_reference_faces | |
from facefusion.filesystem import get_file_name, in_directory, is_image, is_video, resolve_file_paths, resolve_relative_path, same_file_extension | |
from facefusion.processors import choices as processors_choices | |
from facefusion.processors.types import DeepSwapperInputs, DeepSwapperMorph | |
from facefusion.program_helper import find_argument_group | |
from facefusion.thread_helper import thread_semaphore | |
from facefusion.types import ApplyStateItem, Args, DownloadScope, Face, InferencePool, Mask, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame | |
from facefusion.vision import conditional_match_frame_color, read_image, read_static_image, write_image | |
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: | |
model_config = [] | |
if download_scope == 'full': | |
model_config.extend( | |
[ | |
('druuzil', 'adam_levine_320'), | |
('druuzil', 'adrianne_palicki_384'), | |
('druuzil', 'agnetha_falskog_224'), | |
('druuzil', 'alan_ritchson_320'), | |
('druuzil', 'alicia_vikander_320'), | |
('druuzil', 'amber_midthunder_320'), | |
('druuzil', 'andras_arato_384'), | |
('druuzil', 'andrew_tate_320'), | |
('druuzil', 'angelina_jolie_384'), | |
('druuzil', 'anne_hathaway_320'), | |
('druuzil', 'anya_chalotra_320'), | |
('druuzil', 'arnold_schwarzenegger_320'), | |
('druuzil', 'benjamin_affleck_320'), | |
('druuzil', 'benjamin_stiller_384'), | |
('druuzil', 'bradley_pitt_224'), | |
('druuzil', 'brie_larson_384'), | |
('druuzil', 'bruce_campbell_384'), | |
('druuzil', 'bryan_cranston_320'), | |
('druuzil', 'catherine_blanchett_352'), | |
('druuzil', 'christian_bale_320'), | |
('druuzil', 'christopher_hemsworth_320'), | |
('druuzil', 'christoph_waltz_384'), | |
('druuzil', 'cillian_murphy_320'), | |
('druuzil', 'cobie_smulders_256'), | |
('druuzil', 'dwayne_johnson_384'), | |
('druuzil', 'edward_norton_320'), | |
('druuzil', 'elisabeth_shue_320'), | |
('druuzil', 'elizabeth_olsen_384'), | |
('druuzil', 'elon_musk_320'), | |
('druuzil', 'emily_blunt_320'), | |
('druuzil', 'emma_stone_384'), | |
('druuzil', 'emma_watson_320'), | |
('druuzil', 'erin_moriarty_384'), | |
('druuzil', 'eva_green_320'), | |
('druuzil', 'ewan_mcgregor_320'), | |
('druuzil', 'florence_pugh_320'), | |
('druuzil', 'freya_allan_320'), | |
('druuzil', 'gary_cole_224'), | |
('druuzil', 'gigi_hadid_224'), | |
('druuzil', 'harrison_ford_384'), | |
('druuzil', 'hayden_christensen_320'), | |
('druuzil', 'heath_ledger_320'), | |
('druuzil', 'henry_cavill_448'), | |
('druuzil', 'hugh_jackman_384'), | |
('druuzil', 'idris_elba_320'), | |
('druuzil', 'jack_nicholson_320'), | |
('druuzil', 'james_carrey_384'), | |
('druuzil', 'james_mcavoy_320'), | |
('druuzil', 'james_varney_320'), | |
('druuzil', 'jason_momoa_320'), | |
('druuzil', 'jason_statham_320'), | |
('druuzil', 'jennifer_connelly_384'), | |
('druuzil', 'jimmy_donaldson_320'), | |
('druuzil', 'jordan_peterson_384'), | |
('druuzil', 'karl_urban_224'), | |
('druuzil', 'kate_beckinsale_384'), | |
('druuzil', 'laurence_fishburne_384'), | |
('druuzil', 'lili_reinhart_320'), | |
('druuzil', 'luke_evans_384'), | |
('druuzil', 'mads_mikkelsen_384'), | |
('druuzil', 'mary_winstead_320'), | |
('druuzil', 'margaret_qualley_384'), | |
('druuzil', 'melina_juergens_320'), | |
('druuzil', 'michael_fassbender_320'), | |
('druuzil', 'michael_fox_320'), | |
('druuzil', 'millie_bobby_brown_320'), | |
('druuzil', 'morgan_freeman_320'), | |
('druuzil', 'patrick_stewart_224'), | |
('druuzil', 'rachel_weisz_384'), | |
('druuzil', 'rebecca_ferguson_320'), | |
('druuzil', 'scarlett_johansson_320'), | |
('druuzil', 'shannen_doherty_384'), | |
('druuzil', 'seth_macfarlane_384'), | |
('druuzil', 'thomas_cruise_320'), | |
('druuzil', 'thomas_hanks_384'), | |
('druuzil', 'william_murray_384'), | |
('druuzil', 'zoe_saldana_384'), | |
('edel', 'emma_roberts_224'), | |
('edel', 'ivanka_trump_224'), | |
('edel', 'lize_dzjabrailova_224'), | |
('edel', 'sidney_sweeney_224'), | |
('edel', 'winona_ryder_224') | |
]) | |
if download_scope in [ 'lite', 'full' ]: | |
model_config.extend( | |
[ | |
('iperov', 'alexandra_daddario_224'), | |
('iperov', 'alexei_navalny_224'), | |
('iperov', 'amber_heard_224'), | |
('iperov', 'dilraba_dilmurat_224'), | |
('iperov', 'elon_musk_224'), | |
('iperov', 'emilia_clarke_224'), | |
('iperov', 'emma_watson_224'), | |
('iperov', 'erin_moriarty_224'), | |
('iperov', 'jackie_chan_224'), | |
('iperov', 'james_carrey_224'), | |
('iperov', 'jason_statham_320'), | |
('iperov', 'keanu_reeves_320'), | |
('iperov', 'margot_robbie_224'), | |
('iperov', 'natalie_dormer_224'), | |
('iperov', 'nicolas_coppola_224'), | |
('iperov', 'robert_downey_224'), | |
('iperov', 'rowan_atkinson_224'), | |
('iperov', 'ryan_reynolds_224'), | |
('iperov', 'scarlett_johansson_224'), | |
('iperov', 'sylvester_stallone_224'), | |
('iperov', 'thomas_cruise_224'), | |
('iperov', 'thomas_holland_224'), | |
('iperov', 'vin_diesel_224'), | |
('iperov', 'vladimir_putin_224') | |
]) | |
if download_scope == 'full': | |
model_config.extend( | |
[ | |
('jen', 'angelica_trae_288'), | |
('jen', 'ella_freya_224'), | |
('jen', 'emma_myers_320'), | |
('jen', 'evie_pickerill_224'), | |
('jen', 'kang_hyewon_320'), | |
('jen', 'maddie_mead_224'), | |
('jen', 'nicole_turnbull_288'), | |
('mats', 'alica_schmidt_320'), | |
('mats', 'ashley_alexiss_224'), | |
('mats', 'billie_eilish_224'), | |
('mats', 'brie_larson_224'), | |
('mats', 'cara_delevingne_224'), | |
('mats', 'carolin_kebekus_224'), | |
('mats', 'chelsea_clinton_224'), | |
('mats', 'claire_boucher_224'), | |
('mats', 'corinna_kopf_224'), | |
('mats', 'florence_pugh_224'), | |
('mats', 'hillary_clinton_224'), | |
('mats', 'jenna_fischer_224'), | |
('mats', 'kim_jisoo_320'), | |
('mats', 'mica_suarez_320'), | |
('mats', 'shailene_woodley_224'), | |
('mats', 'shraddha_kapoor_320'), | |
('mats', 'yu_jimin_352'), | |
('rumateus', 'alison_brie_224'), | |
('rumateus', 'amber_heard_224'), | |
('rumateus', 'angelina_jolie_224'), | |
('rumateus', 'aubrey_plaza_224'), | |
('rumateus', 'bridget_regan_224'), | |
('rumateus', 'cobie_smulders_224'), | |
('rumateus', 'deborah_woll_224'), | |
('rumateus', 'dua_lipa_224'), | |
('rumateus', 'emma_stone_224'), | |
('rumateus', 'hailee_steinfeld_224'), | |
('rumateus', 'hilary_duff_224'), | |
('rumateus', 'jessica_alba_224'), | |
('rumateus', 'jessica_biel_224'), | |
('rumateus', 'john_cena_224'), | |
('rumateus', 'kim_kardashian_224'), | |
('rumateus', 'kristen_bell_224'), | |
('rumateus', 'lucy_liu_224'), | |
('rumateus', 'margot_robbie_224'), | |
('rumateus', 'megan_fox_224'), | |
('rumateus', 'meghan_markle_224'), | |
('rumateus', 'millie_bobby_brown_224'), | |
('rumateus', 'natalie_portman_224'), | |
('rumateus', 'nicki_minaj_224'), | |
('rumateus', 'olivia_wilde_224'), | |
('rumateus', 'shay_mitchell_224'), | |
('rumateus', 'sophie_turner_224'), | |
('rumateus', 'taylor_swift_224') | |
]) | |
model_set : ModelSet = {} | |
for model_scope, model_name in model_config: | |
model_id = '/'.join([ model_scope, model_name ]) | |
model_set[model_id] =\ | |
{ | |
'hashes': | |
{ | |
'deep_swapper': | |
{ | |
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_scope, model_name + '.hash'), | |
'path': resolve_relative_path('../.assets/models/' + model_scope + '/' + model_name + '.hash') | |
} | |
}, | |
'sources': | |
{ | |
'deep_swapper': | |
{ | |
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_scope, model_name + '.dfm'), | |
'path': resolve_relative_path('../.assets/models/' + model_scope + '/' + model_name + '.dfm') | |
} | |
}, | |
'template': 'dfl_whole_face' | |
} | |
custom_model_file_paths = resolve_file_paths(resolve_relative_path('../.assets/models/custom')) | |
if custom_model_file_paths: | |
for model_file_path in custom_model_file_paths: | |
model_id = '/'.join([ 'custom', get_file_name(model_file_path) ]) | |
model_set[model_id] =\ | |
{ | |
'sources': | |
{ | |
'deep_swapper': | |
{ | |
'path': resolve_relative_path(model_file_path) | |
} | |
}, | |
'template': 'dfl_whole_face' | |
} | |
return model_set | |
def get_inference_pool() -> InferencePool: | |
model_names = [ state_manager.get_item('deep_swapper_model') ] | |
model_source_set = get_model_options().get('sources') | |
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) | |
def clear_inference_pool() -> None: | |
model_names = [ state_manager.get_item('deep_swapper_model') ] | |
inference_manager.clear_inference_pool(__name__, model_names) | |
def get_model_options() -> ModelOptions: | |
model_name = state_manager.get_item('deep_swapper_model') | |
return create_static_model_set('full').get(model_name) | |
def get_model_size() -> Size: | |
deep_swapper = get_inference_pool().get('deep_swapper') | |
for deep_swapper_input in deep_swapper.get_inputs(): | |
if deep_swapper_input.name == 'in_face:0': | |
return deep_swapper_input.shape[1:3] | |
return 0, 0 | |
def register_args(program : ArgumentParser) -> None: | |
group_processors = find_argument_group(program, 'processors') | |
if group_processors: | |
group_processors.add_argument('--deep-swapper-model', help = wording.get('help.deep_swapper_model'), default = config.get_str_value('processors', 'deep_swapper_model', 'iperov/elon_musk_224'), choices = processors_choices.deep_swapper_models) | |
group_processors.add_argument('--deep-swapper-morph', help = wording.get('help.deep_swapper_morph'), type = int, default = config.get_int_value('processors', 'deep_swapper_morph', '100'), choices = processors_choices.deep_swapper_morph_range, metavar = create_int_metavar(processors_choices.deep_swapper_morph_range)) | |
facefusion.jobs.job_store.register_step_keys([ 'deep_swapper_model', 'deep_swapper_morph' ]) | |
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None: | |
apply_state_item('deep_swapper_model', args.get('deep_swapper_model')) | |
apply_state_item('deep_swapper_morph', args.get('deep_swapper_morph')) | |
def pre_check() -> bool: | |
model_hash_set = get_model_options().get('hashes') | |
model_source_set = get_model_options().get('sources') | |
if model_hash_set and model_source_set: | |
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) | |
return True | |
def pre_process(mode : ProcessMode) -> bool: | |
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): | |
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__) | |
return False | |
if mode == 'output' and not in_directory(state_manager.get_item('output_path')): | |
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__) | |
return False | |
if mode == 'output' and not same_file_extension(state_manager.get_item('target_path'), state_manager.get_item('output_path')): | |
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__) | |
return False | |
return True | |
def post_process() -> None: | |
read_static_image.cache_clear() | |
video_manager.clear_video_pool() | |
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: | |
clear_inference_pool() | |
if state_manager.get_item('video_memory_strategy') == 'strict': | |
content_analyser.clear_inference_pool() | |
face_classifier.clear_inference_pool() | |
face_detector.clear_inference_pool() | |
face_landmarker.clear_inference_pool() | |
face_masker.clear_inference_pool() | |
face_recognizer.clear_inference_pool() | |
def swap_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: | |
model_template = get_model_options().get('template') | |
model_size = get_model_size() | |
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size) | |
crop_vision_frame_raw = crop_vision_frame.copy() | |
box_mask = create_box_mask(crop_vision_frame, state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding')) | |
crop_masks =\ | |
[ | |
box_mask | |
] | |
if 'occlusion' in state_manager.get_item('face_mask_types'): | |
occlusion_mask = create_occlusion_mask(crop_vision_frame) | |
crop_masks.append(occlusion_mask) | |
crop_vision_frame = prepare_crop_frame(crop_vision_frame) | |
deep_swapper_morph = numpy.array([ numpy.interp(state_manager.get_item('deep_swapper_morph'), [ 0, 100 ], [ 0, 1 ]) ]).astype(numpy.float32) | |
crop_vision_frame, crop_source_mask, crop_target_mask = forward(crop_vision_frame, deep_swapper_morph) | |
crop_vision_frame = normalize_crop_frame(crop_vision_frame) | |
crop_vision_frame = conditional_match_frame_color(crop_vision_frame_raw, crop_vision_frame) | |
crop_masks.append(prepare_crop_mask(crop_source_mask, crop_target_mask)) | |
if 'area' in state_manager.get_item('face_mask_types'): | |
face_landmark_68 = cv2.transform(target_face.landmark_set.get('68').reshape(1, -1, 2), affine_matrix).reshape(-1, 2) | |
area_mask = create_area_mask(crop_vision_frame, face_landmark_68, state_manager.get_item('face_mask_areas')) | |
crop_masks.append(area_mask) | |
if 'region' in state_manager.get_item('face_mask_types'): | |
region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions')) | |
crop_masks.append(region_mask) | |
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1) | |
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix) | |
return paste_vision_frame | |
def forward(crop_vision_frame : VisionFrame, deep_swapper_morph : DeepSwapperMorph) -> Tuple[VisionFrame, Mask, Mask]: | |
deep_swapper = get_inference_pool().get('deep_swapper') | |
deep_swapper_inputs = {} | |
for deep_swapper_input in deep_swapper.get_inputs(): | |
if deep_swapper_input.name == 'in_face:0': | |
deep_swapper_inputs[deep_swapper_input.name] = crop_vision_frame | |
if deep_swapper_input.name == 'morph_value:0': | |
deep_swapper_inputs[deep_swapper_input.name] = deep_swapper_morph | |
with thread_semaphore(): | |
crop_target_mask, crop_vision_frame, crop_source_mask = deep_swapper.run(None, deep_swapper_inputs) | |
return crop_vision_frame[0], crop_source_mask[0], crop_target_mask[0] | |
def has_morph_input() -> bool: | |
deep_swapper = get_inference_pool().get('deep_swapper') | |
for deep_swapper_input in deep_swapper.get_inputs(): | |
if deep_swapper_input.name == 'morph_value:0': | |
return True | |
return False | |
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: | |
crop_vision_frame = cv2.addWeighted(crop_vision_frame, 1.75, cv2.GaussianBlur(crop_vision_frame, (0, 0), 2), -0.75, 0) | |
crop_vision_frame = crop_vision_frame / 255.0 | |
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0).astype(numpy.float32) | |
return crop_vision_frame | |
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: | |
crop_vision_frame = (crop_vision_frame * 255.0).clip(0, 255) | |
crop_vision_frame = crop_vision_frame.astype(numpy.uint8) | |
return crop_vision_frame | |
def prepare_crop_mask(crop_source_mask : Mask, crop_target_mask : Mask) -> Mask: | |
model_size = get_model_size() | |
blur_size = 6.25 | |
kernel_size = 3 | |
crop_mask = numpy.minimum.reduce([ crop_source_mask, crop_target_mask ]) | |
crop_mask = crop_mask.reshape(model_size).clip(0, 1) | |
crop_mask = cv2.erode(crop_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)), iterations = 2) | |
crop_mask = cv2.GaussianBlur(crop_mask, (0, 0), blur_size) | |
return crop_mask | |
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: | |
return swap_face(target_face, temp_vision_frame) | |
def process_frame(inputs : DeepSwapperInputs) -> VisionFrame: | |
reference_faces = inputs.get('reference_faces') | |
target_vision_frame = inputs.get('target_vision_frame') | |
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ])) | |
if state_manager.get_item('face_selector_mode') == 'many': | |
if many_faces: | |
for target_face in many_faces: | |
target_vision_frame = swap_face(target_face, target_vision_frame) | |
if state_manager.get_item('face_selector_mode') == 'one': | |
target_face = get_one_face(many_faces) | |
if target_face: | |
target_vision_frame = swap_face(target_face, target_vision_frame) | |
if state_manager.get_item('face_selector_mode') == 'reference': | |
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance')) | |
if similar_faces: | |
for similar_face in similar_faces: | |
target_vision_frame = swap_face(similar_face, target_vision_frame) | |
return target_vision_frame | |
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: | |
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None | |
for queue_payload in process_manager.manage(queue_payloads): | |
target_vision_path = queue_payload['frame_path'] | |
target_vision_frame = read_image(target_vision_path) | |
output_vision_frame = process_frame( | |
{ | |
'reference_faces': reference_faces, | |
'target_vision_frame': target_vision_frame | |
}) | |
write_image(target_vision_path, output_vision_frame) | |
update_progress(1) | |
def process_image(source_path : str, target_path : str, output_path : str) -> None: | |
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None | |
target_vision_frame = read_static_image(target_path) | |
output_vision_frame = process_frame( | |
{ | |
'reference_faces': reference_faces, | |
'target_vision_frame': target_vision_frame | |
}) | |
write_image(output_path, output_vision_frame) | |
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: | |
processors.multi_process_frames(None, temp_frame_paths, process_frames) | |