Spaces:
Sleeping
Sleeping
File size: 26,224 Bytes
f8d91ce 882afc3 545ed4a 16d78bc 0dee53b f8d91ce a3ac587 16d78bc 8a26e5a a3ac587 8a26e5a a3ac587 8a26e5a a3ac587 8a26e5a a3ac587 16d78bc a3ac587 16d78bc a3ac587 2a3f5bb a3ac587 2a3f5bb a3ac587 16d78bc 3003577 fa30b73 0dde736 0dee53b fdc9e4b 5fd1d5e fdc9e4b 5fd1d5e 0dee53b f7834ca 16d78bc 4eb348b 0dde736 ca2f328 39e7123 2bb0484 39e7123 2bb0484 39e7123 fa30b73 3003577 545ed4a ca2f328 545ed4a ca2f328 545ed4a ca2f328 545ed4a ca2f328 12751d4 ca2f328 12751d4 545ed4a ca2f328 545ed4a 16d78bc d753067 16d78bc d753067 16d78bc 8a26e5a a3ac587 8a26e5a a3ac587 8a26e5a 4823330 8a26e5a 2bb0484 39e7123 2bb0484 39e7123 2bb0484 39e7123 2bb0484 39e7123 8a26e5a 39e7123 8a26e5a 39e7123 8a26e5a 4823330 8a26e5a d4ad6f4 a3ac587 16d78bc a3ac587 16d78bc a3ac587 16d78bc a3ac587 943208c a3ac587 0dee53b 16d78bc 0dee53b a3ac587 0dee53b a3ac587 0dee53b a3ac587 0dee53b a3ac587 0dee53b a3ac587 d4ad6f4 a3ac587 8a26e5a a3ac587 8a26e5a a3ac587 16d78bc d753067 0dee53b d753067 16d78bc d753067 16d78bc d753067 16d78bc d753067 16d78bc a3ac587 0dee53b a3ac587 0dee53b a3ac587 7c2d2d3 a3ac587 7c2d2d3 a3ac587 7c2d2d3 a3ac587 2a3f5bb 7c2d2d3 8a26e5a 7c2d2d3 8a26e5a 7c2d2d3 a3ac587 16d78bc a3ac587 b8eb75c a3ac587 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
import streamlit as st
import pickle
import requests
from bs4 import BeautifulSoup
import easyocr
import numpy as np
from PIL import Image
import cv2
import warnings
# Suppress sklearn version warnings
warnings.filterwarnings("ignore", category=UserWarning, module="sklearn")
# === Custom CSS for better styling ===
def load_css():
st.markdown("""
<style>
/* Main app styling */
.main-header {
text-align: center;
padding: 2rem 0;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
.main-header p {
font-size: 1.1rem;
opacity: 0.9;
margin: 0;
}
/* Card styling */
.info-card {
background: white;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
border-left: 4px solid #667eea;
margin: 1rem 0;
}
/* Camera card styling */
.camera-card {
background: linear-gradient(135deg, #f8f9fa, #e9ecef);
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
border-left: 4px solid #28a745;
margin: 1rem 0;
}
/* Results styling - matching the image design */
.allergen-result {
padding: 1rem 1.5rem;
border-radius: 8px;
margin: 0.5rem 0;
font-size: 1rem;
font-weight: 500;
display: flex;
align-items: center;
gap: 0.5rem;
}
.allergen-detected {
background-color: #f8d7da;
color: #721c24;
border: 1px solid #f1aeb5;
}
.allergen-safe {
background-color: #d1e7dd;
color: #0f5132;
border: 1px solid #a3cfbb;
}
.allergen-summary {
background-color: #fff3cd;
color: #664d03;
border: 1px solid #ffecb5;
padding: 1rem 1.5rem;
border-radius: 8px;
margin: 1rem 0;
font-weight: 600;
text-align: center;
}
/* OCR result styling */
.ocr-result {
background: #f8f9fa;
padding: 1rem 1.5rem;
margin: 1rem 0;
border-radius: 10px;
border-left: 4px solid #17a2b8;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
line-height: 1.6;
font-size: 1rem;
}
.ocr-result strong {
color: #495057;
font-weight: 600;
}
/* Button styling */
.stButton > button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border: none;
border-radius: 25px;
padding: 0.75rem 2rem;
font-weight: bold;
transition: all 0.3s ease;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.15);
}
/* Camera button styling */
.camera-button {
background: linear-gradient(135deg, #28a745 0%, #20c997 100%) !important;
}
/* Radio button styling */
.stRadio > div {
background: white;
padding: 1rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
/* Text area styling */
.stTextArea > div > div > textarea {
border-radius: 10px;
border: 2px solid #e0e0e0;
transition: border-color 0.3s ease;
}
.stTextArea > div > div > textarea:focus {
border-color: #667eea;
box-shadow: 0 0 10px rgba(102, 126, 234, 0.2);
}
/* Expander styling */
.streamlit-expanderHeader {
background: linear-gradient(135deg, #f8f9fa, #e9ecef);
border-radius: 10px;
border: 1px solid #dee2e6;
}
/* Progress indicator */
.progress-text {
text-align: center;
font-weight: bold;
color: #667eea;
margin: 1rem 0;
}
/* Improved ingredient list styling - single div */
.ingredients-container {
background: #f8f9fa;
padding: 1rem 1.5rem;
margin: 1rem 0;
border-radius: 10px;
border-left: 4px solid #667eea;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
line-height: 1.6;
font-size: 1rem;
}
.ingredients-container strong {
color: #495057;
font-weight: 600;
}
/* Footer */
.footer {
text-align: center;
padding: 2rem 0;
color: #6c757d;
border-top: 1px solid #e9ecef;
margin-top: 3rem;
}
</style>
""", unsafe_allow_html=True)
# === Load EasyOCR Reader ===
@st.cache_resource
def load_ocr_reader():
"""Load EasyOCR reader with Indonesian and English language support"""
try:
reader = easyocr.Reader(['id', 'en'], gpu=False) # Indonesian and English
return reader
except Exception as e:
st.error(f"β Gagal memuat EasyOCR: {str(e)}")
return None
# === Load TF-IDF Vectorizer ===
@st.cache_resource
def load_vectorizer():
try:
with open("saved_models/tfidf_vectorizer.pkl", "rb") as f:
vectorizer = pickle.load(f)
return vectorizer
except Exception as e:
st.error(f"β Gagal memuat vectorizer: {str(e)}")
st.warning("β οΈ Jika error terkait versi sklearn, coba install ulang dengan: pip install scikit-learn==1.2.2")
return None
# === Load XGBoost Model ===
@st.cache_resource
def load_model():
try:
with open("saved_models/XGBoost_model.pkl", "rb") as f:
model = pickle.load(f)
return model
except Exception as e:
st.error(f"β Gagal memuat model: {str(e)}")
st.warning("β οΈ Jika error terkait versi sklearn, coba install ulang dengan: pip install scikit-learn==1.2.2")
return None
# === OCR Text Extraction ===
def extract_text_from_image(image, reader):
"""Extract text from image using EasyOCR"""
try:
# Convert PIL image to numpy array
if isinstance(image, Image.Image):
image_array = np.array(image)
else:
image_array = image
# Perform OCR
results = reader.readtext(image_array)
# Extract text from results
extracted_texts = []
confidence_scores = []
for (bbox, text, confidence) in results:
if confidence > 0.3: # Filter out low confidence text
extracted_texts.append(text)
confidence_scores.append(confidence)
# Join all extracted text
full_text = " ".join(extracted_texts)
avg_confidence = np.mean(confidence_scores) if confidence_scores else 0
return full_text, extracted_texts, avg_confidence
except Exception as e:
return "", [], 0
# === Prediksi ===
def predict_allergen(model, vectorizer, input_text):
X_input = vectorizer.transform([input_text])
prediction = model.predict(X_input)
try:
# Untuk multi-label classification, predict_proba mengembalikan list probabilitas
probabilities = model.predict_proba(X_input)
# Jika probabilities adalah list of arrays (multi-label)
if isinstance(probabilities, list):
# Ambil probabilitas untuk kelas positif dari setiap classifier
positive_probs = []
for i, prob_array in enumerate(probabilities):
if prob_array.shape[1] == 2: # Binary classification
positive_probs.append(prob_array[0][1]) # Probabilitas kelas positif
else:
positive_probs.append(prob_array[0][0]) # Jika hanya 1 kelas
return prediction[0], positive_probs
else:
# Single output
return prediction[0], probabilities[0]
except Exception as e:
# Jika predict_proba gagal, gunakan decision_function jika tersedia
try:
decision_scores = model.decision_function(X_input)
# Convert decision scores to probabilities using sigmoid
import numpy as np
probabilities = 1 / (1 + np.exp(-decision_scores[0]))
return prediction[0], probabilities
except:
# Last fallback - return predictions as confidence (0 or 1 -> 0% or 100%)
confidence_scores = [float(pred) for pred in prediction[0]]
return prediction[0], confidence_scores
# === Scraping bahan dari Cookpad ===
def get_ingredients_from_cookpad(url):
headers = {"User-Agent": "Mozilla/5.0"}
try:
response = requests.get(url, headers=headers)
if response.status_code != 200:
return None, "Gagal mengambil halaman."
soup = BeautifulSoup(response.text, "html.parser")
ingredient_div = soup.find("div", class_="ingredient-list")
if not ingredient_div:
return None, "Tidak menemukan elemen bahan."
ingredients = []
for item in ingredient_div.find_all("li"):
amount = item.find("bdi")
name = item.find("span")
if amount and name:
ingredients.append(f"{amount.get_text(strip=True)} {name.get_text(strip=True)}")
else:
ingredients.append(item.get_text(strip=True))
return ingredients, None
except Exception as e:
return None, f"Terjadi kesalahan: {str(e)}"
# === Display OCR Results ===
def display_ocr_results(extracted_text, text_list, confidence):
"""Display OCR extraction results"""
st.markdown("### π Hasil Ekstraksi Teks")
if extracted_text.strip():
st.markdown(f'''
<div class="ocr-result">
<strong>π Teks yang Terdeteksi:</strong><br>
{extracted_text}
</div>
''', unsafe_allow_html=True)
# Show confidence and individual text elements
with st.expander(f"π Detail OCR (Confidence: {confidence:.2f})", expanded=False):
st.markdown("**Teks Individual yang Terdeteksi:**")
for i, text in enumerate(text_list, 1):
st.write(f"{i}. {text}")
# Show tips for better results
if confidence < 0.5:
st.info("π‘ **Tips untuk hasil yang lebih baik:** Confidence rendah terdeteksi. Coba ambil foto dengan pencahayaan yang lebih baik, hindari bayangan, dan pastikan teks tidak buram.")
else:
st.warning("β οΈ Tidak ada teks yang dapat diekstrak dari gambar.")
# Provide detailed troubleshooting tips
st.markdown("""
<div class="info-card">
<strong>π§ Tips Troubleshooting:</strong><br>
β’ Pastikan pencahayaan cukup terang<br>
β’ Hindari bayangan pada teks<br>
β’ Pastikan teks tidak buram atau kabur<br>
β’ Coba pegang kamera lebih stabil<br>
β’ Pastikan teks berukuran cukup besar di foto<br>
β’ Hindari refleksi cahaya pada permukaan teks<br>
β’ Coba ambil foto dari jarak yang berbeda
</div>
""", unsafe_allow_html=True)
# === Display results with custom styling matching the image ===
def display_results(results, probabilities, labels):
st.markdown("### π― Hasil Analisis Alergen")
# Emoji mapping for each allergen
allergen_emojis = {
'Susu': 'π₯',
'Kacang': 'π₯',
'Telur': 'π₯',
'Makanan Laut': 'π¦',
'Gandum': 'πΎ'
}
detected_allergens = []
# Display each allergen result
for i, (allergen, status) in enumerate(results.items()):
emoji = allergen_emojis.get(allergen, 'π')
# Get actual probability from model
try:
if isinstance(probabilities, list) and i < len(probabilities):
confidence = probabilities[i] * 100
elif hasattr(probabilities, '__getitem__') and i < len(probabilities):
confidence = probabilities[i] * 100
else:
# If no probability available, show based on prediction
confidence = 100.0 if status == 1 else 0.0
except (IndexError, TypeError):
# Fallback to prediction-based confidence
confidence = 100.0 if status == 1 else 0.0
if status == 1: # Detected
detected_allergens.append(allergen)
st.markdown(f'''
<div class="allergen-result allergen-detected">
{emoji} {allergen}: Terdeteksi β οΈ ({confidence:.2f}%)
</div>
''', unsafe_allow_html=True)
else: # Not detected
# For negative cases, show (100 - confidence) to represent "not detected" confidence
negative_confidence = 100 - confidence if confidence > 50 else confidence
st.markdown(f'''
<div class="allergen-result allergen-safe">
{emoji} {allergen}: Tidak Terdeteksi β ({negative_confidence:.2f}%)
</div>
''', unsafe_allow_html=True)
# Display summary
if detected_allergens:
allergen_list = ", ".join(detected_allergens)
st.markdown(f'''
<div class="allergen-summary">
Resep ini mengandung alergen: {allergen_list}
</div>
''', unsafe_allow_html=True)
else:
st.markdown(f'''
<div class="allergen-summary">
π Tidak ada alergen berbahaya terdeteksi dalam resep ini!
</div>
''', unsafe_allow_html=True)
# === Main UI ===
def main():
st.set_page_config(
page_title="Deteksi Alergen Makanan",
page_icon="π₯",
layout="wide",
initial_sidebar_state="expanded"
)
# Load custom CSS
load_css()
# Header
st.markdown("""
<div class="main-header">
<h1>π₯ Deteksi Alergen Makanan</h1>
<p>Analisis kandungan alergen dalam resep makanan dengan teknologi AI & OCR</p>
</div>
""", unsafe_allow_html=True)
# Sidebar info
with st.sidebar:
st.markdown("### π Informasi Alergen")
st.markdown("""
**Alergen yang dapat dideteksi:**
- π₯ Susu
- π₯ Kacang
- π₯ Telur
- π¦ Makanan Laut
- πΎ Gandum
""")
st.markdown("### π‘ Tips Penggunaan")
st.markdown("""
**Input Manual:**
- Masukkan bahan dengan detail
- Gunakan nama bahan dalam bahasa Indonesia
**Kamera OCR:**
- Pastikan teks terlihat jelas
- Gunakan pencahayaan yang baik
- Hindari blur atau teks terpotong
**URL Cookpad:**
- Pastikan link valid
- Maksimal 20 URL per analisis
""")
# Main content
col1, col2, col3 = st.columns([1, 6, 1])
with col2:
# Input method selection
st.markdown("### π§ Pilih Metode Input")
input_mode = st.radio(
"Pilih metode input data",
["π Input Manual", "π· Kamera OCR", "π URL Cookpad"],
horizontal=True,
label_visibility="collapsed"
)
# Load model components
try:
vectorizer = load_vectorizer()
model = load_model()
if vectorizer is None or model is None:
st.stop()
labels = ['Susu', 'Kacang', 'Telur', 'Makanan Laut', 'Gandum']
except Exception as e:
st.error(f"β Gagal memuat komponen model: {str(e)}")
st.stop()
st.markdown("---")
if input_mode == "π Input Manual":
st.markdown("### π Masukkan Bahan Makanan")
# Info card
st.markdown("""
<div class="info-card">
<strong>π‘ Petunjuk:</strong> Masukkan daftar bahan makanan yang ingin dianalisis.
Pisahkan setiap bahan dengan koma atau baris baru.
</div>
""", unsafe_allow_html=True)
input_text = st.text_area(
"Masukkan bahan makanan",
height=150,
placeholder="Contoh: telur, susu, tepung terigu, garam, mentega...",
label_visibility="collapsed"
)
col_btn1, col_btn2, col_btn3 = st.columns([2, 2, 2])
with col_btn2:
if st.button("π Analisis Alergen", use_container_width=True):
if not input_text.strip():
st.warning("β οΈ Mohon masukkan bahan makanan terlebih dahulu.")
else:
with st.spinner("π Sedang menganalisis..."):
pred, probs = predict_allergen(model, vectorizer, input_text)
results = dict(zip(labels, pred))
st.success("β
Analisis selesai!")
display_results(results, probs, labels)
elif input_mode == "π· Kamera OCR":
st.markdown("### π· Deteksi Alergen dari Gambar")
# Info card for camera
st.markdown("""
<div class="camera-card">
<strong>π· Petunjuk Kamera:</strong> Ambil foto langsung dari daftar bahan, kemasan makanan,
atau resep. Pastikan teks terlihat jelas dan pencahayaan memadai untuk hasil OCR terbaik.
</div>
""", unsafe_allow_html=True)
# Camera input
camera_image = st.camera_input("πΈ Ambil foto dengan kamera")
if camera_image is not None:
# Display the captured image
col_img1, col_img2, col_img3 = st.columns([1, 3, 1])
with col_img2:
st.image(camera_image, caption="π· Gambar yang diambil", use_container_width=True)
# Show image info
img = Image.open(camera_image)
width, height = img.size
st.info(f"π Dimensi gambar: {width} x {height} pixels")
# Load OCR reader
with st.spinner("π Memuat OCR engine..."):
reader = load_ocr_reader()
if reader is None:
st.error("β Gagal memuat OCR engine. Pastikan EasyOCR telah terinstall.")
else:
col_btn1, col_btn2, col_btn3 = st.columns([2, 2, 2])
with col_btn2:
if st.button("π Ekstrak Teks & Analisis", use_container_width=True, key="ocr_analyze"):
# Extract text from image
with st.spinner("π Mengekstrak teks dari gambar... (ini mungkin memakan waktu)"):
extracted_text, text_list, confidence = extract_text_from_image(camera_image, reader)
# Display OCR results (will show tips if no text found)
display_ocr_results(extracted_text, text_list, confidence)
if extracted_text.strip():
# Analyze allergens
with st.spinner("π Menganalisis alergen..."):
pred, probs = predict_allergen(model, vectorizer, extracted_text)
results = dict(zip(labels, pred))
st.success("β
Analisis selesai!")
display_results(results, probs, labels)
else:
# Show additional debug info button
if st.button("π§ Coba Analisis Paksa (Debug Mode)", key="debug_mode"):
st.info("π§ Mode debug: Mencoba ekstraksi dengan parameter yang lebih agresif...")
# Try with different EasyOCR parameters
try:
img_array = np.array(Image.open(camera_image))
results = reader.readtext(img_array, detail=1, paragraph=True, width_ths=0.1, height_ths=0.1)
debug_texts = []
for (bbox, text, conf) in results:
if len(text.strip()) > 0:
debug_texts.append(f"{text.strip()} (conf: {conf:.2f})")
if debug_texts:
st.write("π **Teks yang ditemukan dalam mode debug:**")
for text in debug_texts:
st.write(f"β’ {text}")
# Try analysis with debug text
debug_combined = " ".join([t.split(" (conf:")[0] for t in debug_texts])
pred, probs = predict_allergen(model, vectorizer, debug_combined)
results = dict(zip(labels, pred))
st.markdown("### π§ͺ Hasil Analisis Debug")
display_results(results, probs, labels)
else:
st.warning("Bahkan dalam mode debug, tidak ada teks yang dapat diekstrak.")
except Exception as e:
st.error(f"Error in debug mode: {str(e)}")
elif input_mode == "π URL Cookpad":
st.markdown("### π Analisis dari URL Cookpad")
# Info card
st.markdown("""
<div class="info-card">
<strong>π‘ Petunjuk:</strong> Masukkan hingga 20 URL resep dari Cookpad.
Setiap URL harus dalam baris terpisah.
</div>
""", unsafe_allow_html=True)
urls_input = st.text_area(
"Masukkan URL Cookpad",
placeholder="https://cookpad.com/id/resep/...\nhttps://cookpad.com/id/resep/...",
height=200,
label_visibility="collapsed"
)
urls = [url.strip() for url in urls_input.splitlines() if url.strip()]
if len(urls) > 20:
st.warning("β οΈ Maksimal hanya bisa memproses 20 URL. Menggunakan 20 URL pertama.")
urls = urls[:20]
if urls:
st.info(f"π Siap memproses {len(urls)} URL")
if st.button("π Analisis dari URL", use_container_width=True):
if not urls:
st.warning("β οΈ Mohon masukkan minimal satu URL.")
else:
# Progress bar
progress_bar = st.progress(0)
status_text = st.empty()
for i, url in enumerate(urls):
# Update progress
progress = (i + 1) / len(urls)
progress_bar.progress(progress)
status_text.markdown(f'<div class="progress-text">Memproses resep {i+1} dari {len(urls)}</div>', unsafe_allow_html=True)
ingredients, error = get_ingredients_from_cookpad(url)
with st.expander(f"π Resep #{i+1}", expanded=False):
st.markdown(f"**URL:** {url}")
if error:
st.error(f"β {error}")
else:
st.success("β
Bahan berhasil diambil!")
# Display ingredients in a single nice container
ingredients_text = ", ".join(ingredients)
st.markdown(f'''
<div class="ingredients-container">
<strong>π§Ύ Daftar Bahan:</strong><br>
{ingredients_text}
</div>
''', unsafe_allow_html=True)
# Predict allergens
joined_ingredients = " ".join(ingredients)
pred, probs = predict_allergen(model, vectorizer, joined_ingredients)
results = dict(zip(labels, pred))
st.markdown("---")
display_results(results, probs, labels)
# Clear progress indicators
progress_bar.empty()
status_text.empty()
st.success("π Semua resep telah dianalisis!")
# Footer
st.markdown("""
<div class="footer">
<p>π¬ Powered by XGBoost, TF-IDF & EasyOCR | Made with β€οΈ using Streamlit</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |