Spaces:
Sleeping
Sleeping
File size: 28,626 Bytes
c02bc3b fdb2931 c02bc3b fdb2931 fdb9584 fdb2931 fdb9584 fdb2931 c02bc3b ba31f91 c02bc3b ba31f91 c02bc3b ba31f91 c02bc3b ba31f91 c02bc3b ba31f91 fdb2931 fdb9584 fdb2931 c02bc3b fdb9584 c02bc3b fdb9584 c02bc3b ba31f91 c02bc3b fdb9584 c02bc3b ba31f91 fdb9584 c02bc3b ba31f91 c02bc3b fdb9584 fdb2931 ba31f91 c02bc3b fdb9584 c02bc3b ba31f91 c02bc3b ba31f91 c02bc3b fdb2931 c02bc3b fdb2931 ba31f91 c02bc3b fdb2931 ba31f91 c02bc3b fdb2931 c02bc3b ba31f91 c02bc3b fdb2931 c02bc3b fdb9584 c02bc3b ba31f91 b3f5cdc ba31f91 8216d85 ba31f91 94fc39d ba31f91 fdb9584 ba31f91 fdb9584 ba31f91 d93d2b8 ba31f91 d93d2b8 fdb2931 d93d2b8 fdb2931 d93d2b8 fdb9584 ba31f91 fdb9584 ba31f91 fdb9584 ba31f91 fdb9584 ba31f91 c02bc3b ba31f91 fdb9584 c02bc3b 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d fdb2931 94fc39d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import gradio as gr
import pandas as pd
from io import BytesIO
import os
import json
from datetime import datetime
import firebase_admin
from firebase_admin import credentials, firestore
from dar_processor import preprocess_pdf_text
from gemini_utils import get_structured_data_with_gemini, get_harmonised_titles
from models import ParsedDARReport, HarmonisedPara
# Firebase setup
FIREBASE_CREDENTIALS = os.environ.get("FIREBASE_CREDENTIALS")
if FIREBASE_CREDENTIALS:
# Load credentials from environment variable (preferred for security)
cred = credentials.Certificate(json.loads(FIREBASE_CREDENTIALS))
else:
# Fallback to reading from firebase.json file
if not os.path.exists("firebase.json"):
raise ValueError("firebase.json not found and FIREBASE_CREDENTIALS not set.")
cred = credentials.Certificate("firebase.json")
firebase_admin.initialize_app(cred)
db = firestore.client()
request_counts = db.collection('request_counts')
def get_request_count():
"""Retrieve the current request count for today."""
today = datetime.utcnow().strftime('%Y-%m-%d')
doc_ref = request_counts.document(today)
doc = doc_ref.get()
count = doc.to_dict().get('count', 0) if doc.exists else 0
return count
def check_request_limit():
"""Check if the request limit for the day has been reached."""
today = datetime.utcnow().strftime('%Y-%m-%d')
doc_ref = request_counts.document(today)
doc = doc_ref.get()
if not doc.exists:
# Initialize counter for the new day
doc_ref.set({'count': 0})
count = 0
else:
count = doc.to_dict().get('count', 0)
if count >= 400:
return False, "Daily request limit of 400 reached. Try again tomorrow."
# Increment the counter
doc_ref.update({'count': firestore.Increment(1)})
return True, None
def create_html_report(results_with_harmonised: list[dict]) -> str:
"""Generates an HTML string to display the results in a styled table."""
if not results_with_harmonised:
return "<p>No audit paras found or processed.</p>"
style = """
<style>
body { font-family: sans-serif; }
.styled-table {
border-collapse: collapse; margin: 25px 0; font-size: 0.9em;
min-width: 400px; box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
border-radius: 8px; overflow: hidden;
}
.styled-table thead tr { background-color: #009879; color: #ffffff; text-align: left; }
.styled-table th, .styled-table td { padding: 12px 15px; border-bottom: 1px solid #dddddd; }
.styled-table tbody tr:last-of-type { border-bottom: 2px solid #009879; }
</style>
"""
html = f"{style}<table class='styled-table'><thead><tr><th>Para No.</th><th>Original Audit Para Heading</th><th>Harmonised Audit Para Heading</th><th>Amount Involved (in Lakhs)</th></tr></thead><tbody>"
for item in results_with_harmonised:
para_num = item.get('audit_para_number', 'N/A')
original_heading = item.get('audit_para_heading', 'N/A')
harmonised_heading = item.get('harmonised_audit_para_heading', 'N/A')
amount = f"₹{item.get('revenue_involved_lakhs_rs', 0.0):,.2f} L"
html += f"<tr><td>{para_num}</td><td>{original_heading}</td><td>{harmonised_heading}</td><td>{amount}</td></tr>"
html += "</tbody></table>"
return html
def process_dar_pdf(pdf_file):
"""The main processing function, called after successful login."""
# Check request limit before processing
can_process, error_msg = check_request_limit()
if not can_process:
return error_msg, None, None, f"Requests today: {get_request_count()}/400"
gemini_api_key = os.environ.get("GEMINI_API_KEY")
if not pdf_file:
return "Please upload a PDF file.", None, None, f"Requests today: {get_request_count()}/400"
if not gemini_api_key:
return "Error: GEMINI_API_KEY secret not found in Space settings.", None, None, f"Requests today: {get_request_count()}/400"
# Step 1: Process PDF to text
full_text = preprocess_pdf_text(pdf_file.name)
if full_text.startswith("Error"):
return f"Failed to process PDF: {full_text}", None, None, f"Requests today: {get_request_count()}/400"
# Step 2: Extract structured data
parsed_report = get_structured_data_with_gemini(gemini_api_key, full_text)
if parsed_report.parsing_errors or not parsed_report.audit_paras:
error_msg = parsed_report.parsing_errors or "Could not find any audit paras."
return error_msg, None, None, f"Requests today: {get_request_count()}/400"
# Step 3: Get harmonised titles
original_headings = [p.audit_para_heading for p in parsed_report.audit_paras if p.audit_para_heading]
if not original_headings:
return "Found paras but no headings to harmonise.", None, None, f"Requests today: {get_request_count()}/400"
harmonised_results = get_harmonised_titles(gemini_api_key, full_text, original_headings)
if not harmonised_results:
return "Failed to generate harmonised titles.", None, None, f"Requests today: {get_request_count()}/400"
# Step 4: Combine and prepare outputs
harmonised_map = {item.original_heading: item.harmonised_heading for item in harmonised_results}
final_data_list = []
for para in parsed_report.audit_paras:
combined_info = (parsed_report.header.dict() if parsed_report.header else {}) | para.dict()
combined_info['harmonised_audit_para_heading'] = harmonised_map.get(para.audit_para_heading, "N/A")
final_data_list.append(combined_info)
html_output = create_html_report(final_data_list)
# Step 5: Create Excel file for download
df = pd.DataFrame(final_data_list)
excel_columns = [
'gstin', 'trade_name', 'category', 'audit_group_number', 'audit_para_number',
'audit_para_heading', 'harmonised_audit_para_heading', 'revenue_involved_lakhs_rs',
'revenue_recovered_lakhs_rs', 'status_of_para', 'total_amount_detected_overall_rs',
'total_amount_recovered_overall_rs'
]
df = df.reindex(columns=excel_columns).fillna('N/A')
output_excel = BytesIO()
df.to_excel(output_excel, index=False, sheet_name='DAR_Extraction')
output_excel.seek(0)
excel_file_name = "dar_extraction_report.xlsx"
with open(excel_file_name, "wb") as f:
f.write(output_excel.getbuffer())
return "Processing complete.", html_output, gr.File(value=excel_file_name), f"Requests today: {get_request_count()}/400"
# --- Gradio Interface Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="DAR Harmonisation Tool") as demo:
# --- Login UI (visible initially) ---
with gr.Column(visible=True) as login_ui:
gr.Markdown("# Mumbai CGST Audit Officer Login")
gr.Markdown("Please enter the credentials to access the tool.")
with gr.Row():
username_input = gr.Textbox(label="Username", placeholder="Enter your username")
password_input = gr.Textbox(label="Password", type="password", placeholder="Enter your password")
login_button = gr.Button("Login", variant="primary")
login_error_msg = gr.Markdown(visible=False)
# --- Main App UI (hidden initially) ---
with gr.Column(visible=False) as main_app_ui:
gr.Markdown("# DAR Draft Audit Report Harmonisation Tool")
gr.Markdown("## Initiative by Mumbai Audit 1 Commissionerate")
gr.Markdown(
"Upload a Departmental Audit Report (DAR) in PDF format. The tool will process it and generate harmonised titles for Audit paras in accordance with GST law."
)
request_count_output = gr.Textbox(label="Requests Made Today", interactive=False, value="Requests today: 0/400")
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="Upload DAR PDF", file_types=[".pdf"])
submit_btn = gr.Button("Process Report", variant="primary")
with gr.Column(scale=2):
status_output = gr.Textbox(label="Processing Status", interactive=False)
excel_output = gr.File(label="Download Excel Report")
gr.Markdown("## Harmonised Audit Para Titles")
html_output = gr.HTML()
submit_btn.click(
fn=process_dar_pdf,
inputs=[pdf_input],
outputs=[status_output, html_output, excel_output, request_count_output]
)
# --- Login Functionality ---
def login(username, password):
"""
Checks user credentials against secrets.
For production, these are loaded from Hugging Face secrets.
"""
auth_username = os.environ.get("APP_USERNAME")
auth_password = os.environ.get("APP_PASSWORD")
is_valid_user = (username == auth_username and password == auth_password)
if is_valid_user:
# Login successful: hide login UI, show main app, display request count
request_count = get_request_count()
return {
login_ui: gr.update(visible=False),
main_app_ui: gr.update(visible=True),
login_error_msg: gr.update(visible=False),
request_count_output: gr.update(value=f"Requests today: {request_count}/400")
}
else:
# Login failed: keep login UI visible, show error message
return {
login_ui: gr.update(visible=True),
main_app_ui: gr.update(visible=False),
login_error_msg: gr.update(value="<p style='color:red;'>Invalid username or password.</p>", visible=True),
request_count_output: gr.update(value="Requests today: 0/400")
}
login_button.click(
login,
inputs=[username_input, password_input],
outputs=[login_ui, main_app_ui, login_error_msg, request_count_output]
)
if __name__ == "__main__":
demo.launch(debug=True)# import gradio as gr
# import pandas as pd
# from io import BytesIO
# import os
# import json
# from datetime import datetime
# import firebase_admin
# from firebase_admin import credentials, firestore
# from dar_processor import preprocess_pdf_text
# from gemini_utils import get_structured_data_with_gemini, get_harmonised_titles
# from models import ParsedDARReport, HarmonisedPara
# # Firebase setup
# FIREBASE_CREDENTIALS = os.environ.get("FIREBASE_CREDENTIALS")
# if FIREBASE_CREDENTIALS:
# # Load credentials from environment variable (preferred for security)
# cred = credentials.Certificate(json.loads(FIREBASE_CREDENTIALS))
# else:
# # Fallback to reading from firebase.json file
# if not os.path.exists("firebase.json"):
# raise ValueError("firebase.json not found and FIREBASE_CREDENTIALS not set.")
# cred = credentials.Certificate("firebase.json")
# firebase_admin.initialize_app(cred)
# db = firestore.client()
# request_counts = db.collection('request_counts')
# def get_request_count():
# """Retrieve the current request count for today."""
# today = datetime.utcnow().strftime('%Y-%m-%d')
# doc_ref = request_counts.document(today)
# doc = doc_ref.get()
# count = doc.to_dict().get('count', 0) if doc.exists else 0
# return count
# def check_request_limit():
# """Check if the request limit for the day has been reached."""
# today = datetime.utcnow().strftime('%Y-%m-%d')
# doc_ref = request_counts.document(today)
# doc = doc_ref.get()
# if not doc.exists:
# # Initialize counter for the new day
# doc_ref.set({'count': 0})
# count = 0
# else:
# count = doc.to_dict().get('count', 0)
# if count >= 400:
# return False, "Daily request limit of 400 reached. Try again tomorrow."
# # Increment the counter
# doc_ref.update({'count': firestore.Increment(1)})
# return True, None
# def create_html_report(results_with_harmonised: list[dict]) -> str:
# """Generates an HTML string to display the results in a styled table."""
# if not results_with_harmonised:
# return "<p>No audit paras found or processed.</p>"
# style = """
# <style>
# body { font-family: sans-serif; }
# .styled-table {
# border-collapse: collapse; margin: 25px 0; font-size: 0.9em;
# min-width: 400px; box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
# border-radius: 8px; overflow: hidden;
# }
# .styled-table thead tr { background-color: #009879; color: #ffffff; text-align: left; }
# .styled-table th, .styled-table td { padding: 12px 15px; border-bottom: 1px solid #dddddd; }
# .styled-table tbody tr:last-of-type { border-bottom: 2px solid #009879; }
# </style>
# """
# html = f"{style}<table class='styled-table'><thead><tr><th>Para No.</th><th>Original Audit Para Heading</th><th>Harmonised Audit Para Heading</th><th>Amount Involved (in Lakhs)</th></tr></thead><tbody>"
# for item in results_with_harmonised:
# para_num = item.get('audit_para_number', 'N/A')
# original_heading = item.get('audit_para_heading', 'N/A')
# harmonised_heading = item.get('harmonised_audit_para_heading', 'N/A')
# amount = f"₹{item.get('revenue_involved_lakhs_rs', 0.0):,.2f} L"
# html += f"<tr><td>{para_num}</td><td>{original_heading}</td><td>{harmonised_heading}</td><td>{amount}</td></tr>"
# html += "</tbody></table>"
# return html
# def process_dar_pdf(pdf_file):
# """The main processing function, called after successful login."""
# # Check request limit before processing
# can_process, error_msg = check_request_limit()
# if not can_process:
# return error_msg, None, None, f"Requests today: {get_request_count()}/400"
# gemini_api_key = os.environ.get("GEMINI_API_KEY")
# if not pdf_file:
# return "Please upload a PDF file.", None, None, f"Requests today: {get_request_count()}/400"
# if not gemini_api_key:
# return "Error: GEMINI_API_KEY secret not found in Space settings.", None, None, f"Requests today: {get_request_count()}/400"
# # Step 1: Process PDF to text
# full_text = preprocess_pdf_text(pdf_file.name)
# if full_text.startswith("Error"):
# return f"Failed to process PDF: {full_text}", None, None, f"Requests today: {get_request_count()}/400"
# # Step 2: Extract structured data
# parsed_report = get_structured_data_with_gemini(gemini_api_key, full_text)
# if parsed_report.parsing_errors or not parsed_report.audit_paras:
# error_msg = parsed_report.parsing_errors or "Could not find any audit paras."
# return error_msg, None, None, f"Requests today: {get_request_count()}/400"
# # Step 3: Get harmonised titles
# original_headings = [p.audit_para_heading for p in parsed_report.audit_paras if p.audit_para_heading]
# if not original_headings:
# return "Found paras but no headings to harmonise.", None, None, f"Requests today: {get_request_count()}/400"
# harmonised_results = get_harmonised_titles(gemini_api_key, full_text, original_headings)
# if not harmonised_results:
# return "Failed to generate harmonised titles.", None, None, f"Requests today: {get_request_count()}/400"
# # Step 4: Combine and prepare outputs
# harmonised_map = {item.original_heading: item.harmonised_heading for item in harmonised_results}
# final_data_list = []
# for para in parsed_report.audit_paras:
# combined_info = (parsed_report.header.dict() if parsed_report.header else {}) | para.dict()
# combined_info['harmonised_audit_para_heading'] = harmonised_map.get(para.audit_para_heading, "N/A")
# final_data_list.append(combined_info)
# html_output = create_html_report(final_data_list)
# # Step 5: Create Excel file for download
# df = pd.DataFrame(final_data_list)
# excel_columns = [
# 'gstin', 'trade_name', 'category', 'audit_group_number', 'audit_para_number',
# 'audit_para_heading', 'harmonised_audit_para_heading', 'revenue_involved_lakhs_rs',
# 'revenue_recovered_lakhs_rs', 'status_of_para', 'total_amount_detected_overall_rs',
# 'total_amount_recovered_overall_rs'
# ]
# df = df.reindex(columns=excel_columns).fillna('N/A')
# output_excel = BytesIO()
# df.to_excel(output_excel, index=False, sheet_name='DAR_Extraction')
# output_excel.seek(0)
# excel_file_name = "dar_extraction_report.xlsx"
# with open(excel_file_name, "wb") as f:
# f.write(output_excel.getbuffer())
# return "Processing complete.", html_output, gr.File(value=excel_file_name), f"Requests today: {get_request_count()}/400"
# # --- Gradio Interface Definition ---
# with gr.Blocks(theme=gr.themes.Soft(), title="DAR Harmonisation Tool") as demo:
# # --- Login UI (visible initially) ---
# with gr.Column(visible=True) as login_ui:
# gr.Markdown("# Audit Officer Login")
# gr.Markdown("Please enter the credentials to access the tool.")
# with gr.Row():
# username_input = gr.Textbox(label="Username", placeholder="Enter your username")
# password_input = gr.Textbox(label="Password", type="password", placeholder="Enter your password")
# login_button = gr.Button("Login", variant="primary")
# login_error_msg = gr.Markdown(visible=False)
# # --- Main App UI (hidden initially) ---
# with gr.Column(visible=False) as main_app_ui:
# gr.Markdown("# DAR Draft Audit Report Harmonisation Tool")
# gr.Markdown("## Initiative by Mumbai Audit 1 Commissionerate")
# gr.Markdown(
# "Upload a Observation letter to Taxpayer or Departmental Audit Report (DAR) in PDF format. The tool will process it and generate harmonised titles for Audit paras in accordance with GST law."
# )
# request_count_output = gr.Textbox(label="Requests Made Today", interactive=False, value="Requests today: 0/400")
# with gr.Row():
# with gr.Column(scale=1):
# pdf_input = gr.File(label="Upload DAR PDF", file_types=[".pdf"])
# submit_btn = gr.Button("Process Report", variant="primary")
# with gr.Column(scale=2):
# status_output = gr.Textbox(label="Processing Status", interactive=False)
# excel_output = gr.File(label="Download Excel Report")
# gr.Markdown("## Harmonised Audit Para Titles")
# html_output = gr.HTML()
# submit_btn.click(
# fn=process_dar_pdf,
# inputs=[pdf_input],
# outputs=[status_output, html_output, excel_output, request_count_output]
# )
# # --- Login Functionality ---
# def login(username, password):
# """
# Checks user credentials against secrets.
# For production, these are loaded from Hugging Face secrets.
# """
# auth_username = os.environ.get("APP_USERNAME")
# auth_password = os.environ.get("APP_PASSWORD")
# is_valid_user = (username == auth_username and password == auth_password)
# if is_valid_user:
# # Login successful: hide login UI, show main app, display request count
# request_count = get_request_count()
# return {
# login_ui: gr.update(visible=False),
# main_app_ui: gr.update(visible=True),
# login_error_msg: gr.update(visible=False),
# request_count_output: gr.update(value=f"Requests today: {request_count}/400")
# }
# else:
# # Login failed: keep login UI visible, show error message
# return {
# login_ui: gr.update(visible=True),
# main_app_ui: gr.update(visible=False),
# login_error_msg: gr.update(value="<p style='color:red;'>Invalid username or password.</p>", visible=True),
# request_count_output: gr.update(value="Requests today: 0/400")
# }
# login_button.click(
# login,
# inputs=[username_input, password_input],
# outputs=[login_ui, main_app_ui, login_error_msg, request_count_output]
# )
# if __name__ == "__main__":
# demo.launch(debug=True)
# # import pandas as pd
# # from io import BytesIO
# # import os
# # # These imports assume the other python files (dar_processor.py, etc.) are in the same directory.
# # from dar_processor import preprocess_pdf_text
# # from gemini_utils import get_structured_data_with_gemini, get_harmonised_titles
# # from models import ParsedDARReport, HarmonisedPara
# # def create_html_report(results_with_harmonised: list[dict]) -> str:
# # """Generates an HTML string to display the results in a styled table."""
# # if not results_with_harmonised:
# # return "<p>No audit paras found or processed.</p>"
# # style = """
# # <style>
# # body { font-family: sans-serif; }
# # .styled-table {
# # border-collapse: collapse; margin: 25px 0; font-size: 0.9em;
# # min-width: 400px; box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
# # border-radius: 8px; overflow: hidden;
# # }
# # .styled-table thead tr { background-color: #009879; color: #ffffff; text-align: left; }
# # .styled-table th, .styled-table td { padding: 12px 15px; border-bottom: 1px solid #dddddd; }
# # .styled-table tbody tr:last-of-type { border-bottom: 2px solid #009879; }
# # </style>
# # """
# # html = f"{style}<table class='styled-table'><thead><tr><th>Para No.</th><th>Original Audit Para Heading</th><th>Harmonised Audit Para Heading</th><th>Amount Involved (in Lakhs)</th></tr></thead><tbody>"
# # for item in results_with_harmonised:
# # para_num = item.get('audit_para_number', 'N/A')
# # original_heading = item.get('audit_para_heading', 'N/A')
# # harmonised_heading = item.get('harmonised_audit_para_heading', 'N/A')
# # amount = f"₹{item.get('revenue_involved_lakhs_rs', 0.0):,.2f} L"
# # html += f"<tr><td>{para_num}</td><td>{original_heading}</td><td>{harmonised_heading}</td><td>{amount}</td></tr>"
# # html += "</tbody></table>"
# # return html
# # def process_dar_pdf(pdf_file):
# # """The main processing function, called after successful login."""
# # gemini_api_key = os.environ.get("GEMINI_API_KEY")
# # if not pdf_file:
# # return "Please upload a PDF file.", None, None
# # if not gemini_api_key:
# # return "Error: GEMINI_API_KEY secret not found in Space settings.", None, None
# # # Step 1: Process PDF to text
# # full_text = preprocess_pdf_text(pdf_file.name)
# # if full_text.startswith("Error"):
# # return f"Failed to process PDF: {full_text}", None, None
# # # Step 2: Extract structured data
# # parsed_report = get_structured_data_with_gemini(gemini_api_key, full_text)
# # if parsed_report.parsing_errors or not parsed_report.audit_paras:
# # error_msg = parsed_report.parsing_errors or "Could not find any audit paras."
# # return error_msg, None, None
# # # Step 3: Get harmonised titles
# # original_headings = [p.audit_para_heading for p in parsed_report.audit_paras if p.audit_para_heading]
# # if not original_headings:
# # return "Found paras but no headings to harmonise.", None, None
# # harmonised_results = get_harmonised_titles(gemini_api_key, full_text, original_headings)
# # if not harmonised_results:
# # return "Failed to generate harmonised titles.", None, None
# # # Step 4: Combine and prepare outputs
# # harmonised_map = {item.original_heading: item.harmonised_heading for item in harmonised_results}
# # final_data_list = []
# # for para in parsed_report.audit_paras:
# # combined_info = (parsed_report.header.dict() if parsed_report.header else {}) | para.dict()
# # combined_info['harmonised_audit_para_heading'] = harmonised_map.get(para.audit_para_heading, "N/A")
# # final_data_list.append(combined_info)
# # html_output = create_html_report(final_data_list)
# # # Step 5: Create Excel file for download
# # df = pd.DataFrame(final_data_list)
# # excel_columns = [
# # 'gstin', 'trade_name', 'category', 'audit_group_number', 'audit_para_number',
# # 'audit_para_heading', 'harmonised_audit_para_heading', 'revenue_involved_lakhs_rs',
# # 'revenue_recovered_lakhs_rs', 'status_of_para', 'total_amount_detected_overall_rs',
# # 'total_amount_recovered_overall_rs'
# # ]
# # df = df.reindex(columns=excel_columns).fillna('N/A')
# # output_excel = BytesIO()
# # df.to_excel(output_excel, index=False, sheet_name='DAR_Extraction')
# # output_excel.seek(0)
# # excel_file_name = "dar_extraction_report.xlsx"
# # with open(excel_file_name, "wb") as f:
# # f.write(output_excel.getbuffer())
# # return "Processing complete.", html_output, gr.File(value=excel_file_name)
# # # --- Gradio Interface Definition ---
# # with gr.Blocks(theme=gr.themes.Soft(), title="DAR Harmonisation Tool") as demo:
# # # --- Login UI (visible initially) ---
# # with gr.Column(visible=True) as login_ui:
# # gr.Markdown("# Audit Officer Login")
# # gr.Markdown("Please enter the credentials to access the tool.")
# # with gr.Row():
# # username_input = gr.Textbox(label="Username", placeholder="Enter your username")
# # password_input = gr.Textbox(label="Password", type="password", placeholder="Enter your password")
# # login_button = gr.Button("Login", variant="primary")
# # login_error_msg = gr.Markdown(visible=False)
# # # --- Main App UI (hidden initially) ---
# # with gr.Column(visible=False) as main_app_ui:
# # gr.Markdown("# DAR Draft Audit Report Harmonisation Tool")
# # gr.Markdown("## Initiative by Mumbai Audit 1 Commissionerate")
# # gr.Markdown(
# # "Upload a Observation letter to taxpayer or Departmental Audit Report (DAR) in PDF format. The tool will process it and generate harmonised titles for Audit paras in accordance with GST law."
# # )
# # with gr.Row():
# # with gr.Column(scale=1):
# # pdf_input = gr.File(label="Upload DAR PDF", file_types=[".pdf"])
# # submit_btn = gr.Button("Process Report", variant="primary")
# # with gr.Column(scale=2):
# # status_output = gr.Textbox(label="Processing Status", interactive=False)
# # excel_output = gr.File(label="Download Excel Report")
# # gr.Markdown("## Harmonised Audit Para Titles")
# # html_output = gr.HTML()
# # submit_btn.click(
# # fn=process_dar_pdf,
# # inputs=[pdf_input],
# # outputs=[status_output, html_output, excel_output]
# # )
# # # --- Login Functionality ---
# # def login(username, password):
# # """
# # Checks user credentials against secrets.
# # For production, these are loaded from Hugging Face secrets.
# # """
# # # Get credentials from Hugging Face secrets.
# # # Fallback to default values for local testing if secrets are not set.
# # auth_username = os.environ.get("APP_USERNAME")
# # auth_password = os.environ.get("APP_PASSWORD")
# # is_valid_user = (username == auth_username and password == auth_password)
# # if is_valid_user:
# # # Login successful: hide login UI, show main app
# # return {
# # login_ui: gr.update(visible=False),
# # main_app_ui: gr.update(visible=True),
# # login_error_msg: gr.update(visible=False)
# # }
# # else:
# # # Login failed: keep login UI visible, show error message
# # return {
# # login_ui: gr.update(visible=True),
# # main_app_ui: gr.update(visible=False),
# # login_error_msg: gr.update(value="<p style='color:red;'>Invalid username or password.</p>", visible=True)
# # }
# # login_button.click(
# # login,
# # inputs=[username_input, password_input],
# # outputs=[login_ui, main_app_ui, login_error_msg]
# # )
# # if __name__ == "__main__":
# # demo.launch(debug=True)
|