Spaces:
Sleeping
Sleeping
# import openai | |
# import gradio as gr | |
# from os import getenv | |
# from typing import Any, Dict, Generator, List | |
# from huggingface_hub import InferenceClient | |
# from transformers import AutoTokenizer | |
# from gradio_client import Client | |
# #tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") | |
# #tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# #tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x22B-Instruct-v0.1") | |
# tokenizer='' | |
# temperature = 0.5 | |
# top_p = 0.7 | |
# repetition_penalty = 1.2 | |
# OPENAI_KEY = getenv("OPENAI_API_KEY") | |
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
# # hf_client = InferenceClient( | |
# # "mistralai/Mistral-7B-Instruct-v0.1", | |
# # token=HF_TOKEN | |
# # ) | |
# client = Client("Qwen/Qwen1.5-110B-Chat-demo") | |
# hf_client='' | |
# # hf_client = InferenceClient( | |
# # "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
# # token=HF_TOKEN | |
# # ) | |
# def format_prompt(message: str, api_kind: str): | |
# """ | |
# Formats the given message using a chat template. | |
# Args: | |
# message (str): The user message to be formatted. | |
# Returns: | |
# str: Formatted message after applying the chat template. | |
# """ | |
# # Create a list of message dictionaries with role and content | |
# messages: List[Dict[str, Any]] = [{'role': 'user', 'content': message}] | |
# if api_kind == "openai": | |
# return messages | |
# elif api_kind == "hf": | |
# return tokenizer.apply_chat_template(messages, tokenize=False) | |
# elif api_kind: | |
# raise ValueError("API is not supported") | |
# def generate_hf(prompt: str, history: str, temperature: float = 0.5, max_new_tokens: int = 4000, | |
# top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]: | |
# """ | |
# Generate a sequence of tokens based on a given prompt and history using Mistral client. | |
# Args: | |
# prompt (str): The initial prompt for the text generation. | |
# history (str): Context or history for the text generation. | |
# temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. | |
# max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. | |
# top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. | |
# repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. | |
# Returns: | |
# Generator[str, None, str]: A generator yielding chunks of generated text. | |
# Returns a final string if an error occurs. | |
# """ | |
# temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low | |
# top_p = float(top_p) | |
# generate_kwargs = { | |
# 'temperature': temperature, | |
# 'max_new_tokens': max_new_tokens, | |
# 'top_p': top_p, | |
# 'repetition_penalty': repetition_penalty, | |
# 'do_sample': True, | |
# 'seed': 42, | |
# } | |
# formatted_prompt = format_prompt(prompt, "hf") | |
# try: | |
# stream = hf_client.text_generation(formatted_prompt, **generate_kwargs, | |
# stream=True, details=True, return_full_text=False) | |
# output = "" | |
# for response in stream: | |
# output += response.token.text | |
# yield output | |
# except Exception as e: | |
# if "Too Many Requests" in str(e): | |
# print("ERROR: Too many requests on Mistral client") | |
# gr.Warning("Unfortunately Mistral is unable to process") | |
# return "Unfortunately, I am not able to process your request now." | |
# elif "Authorization header is invalid" in str(e): | |
# print("Authetification error:", str(e)) | |
# gr.Warning("Authentication error: HF token was either not provided or incorrect") | |
# return "Authentication error" | |
# else: | |
# print("Unhandled Exception:", str(e)) | |
# gr.Warning("Unfortunately Mistral is unable to process") | |
# return "I do not know what happened, but I couldn't understand you." | |
# def generate_qwen(formatted_prompt: str, history: str): | |
# response = client.predict( | |
# query=formatted_prompt, | |
# history=[], | |
# system='You are wonderful', | |
# api_name="/model_chat" | |
# ) | |
# print('Response:',response) | |
# #return output | |
# #return response[1][0][1] | |
# return response[1][0][1] | |
# def generate_openai(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 256, | |
# top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]: | |
# """ | |
# Generate a sequence of tokens based on a given prompt and history using Mistral client. | |
# Args: | |
# prompt (str): The initial prompt for the text generation. | |
# history (str): Context or history for the text generation. | |
# temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. | |
# max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. | |
# top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. | |
# repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. | |
# Returns: | |
# Generator[str, None, str]: A generator yielding chunks of generated text. | |
# Returns a final string if an error occurs. | |
# """ | |
# temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low | |
# top_p = float(top_p) | |
# generate_kwargs = { | |
# 'temperature': temperature, | |
# 'max_tokens': max_new_tokens, | |
# 'top_p': top_p, | |
# 'frequency_penalty': max(-2., min(repetition_penalty, 2.)), | |
# } | |
# formatted_prompt = format_prompt(prompt, "openai") | |
# try: | |
# stream = openai.ChatCompletion.create(model="gpt-3.5-turbo-0301", | |
# messages=formatted_prompt, | |
# **generate_kwargs, | |
# stream=True) | |
# output = "" | |
# for chunk in stream: | |
# output += chunk.choices[0].delta.get("content", "") | |
# yield output | |
# except Exception as e: | |
# if "Too Many Requests" in str(e): | |
# print("ERROR: Too many requests on OpenAI client") | |
# gr.Warning("Unfortunately OpenAI is unable to process") | |
# return "Unfortunately, I am not able to process your request now." | |
# elif "You didn't provide an API key" in str(e): | |
# print("Authetification error:", str(e)) | |
# gr.Warning("Authentication error: OpenAI key was either not provided or incorrect") | |
# return "Authentication error" | |
# else: | |
# print("Unhandled Exception:", str(e)) | |
# gr.Warning("Unfortunately OpenAI is unable to process") | |
# return "I do not know what happened, but I couldn't understand you." | |