RagGV1 / rag_pipeline.py
ramysaidagieb's picture
Update rag_pipeline.py
fcec14a verified
import time
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM
class RAGPipeline:
def __init__(self, logger):
self.logger = logger
self.logger("[RAG] جاري تحميل النموذج والمحول...")
self.tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
self.generator = AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
self.chunk_embeddings = []
self.index = []
self.logger("[RAG] تم التحميل بنجاح.")
def build_index(self, chunks):
start = time.time()
self.logger(f"[RAG] بناء الفهرس لـ {len(chunks)} مقاطع...")
self.chunk_embeddings = []
self.index = []
for i, chunk in enumerate(chunks):
embedding = self._dummy_embedding(chunk)
self.chunk_embeddings.append(embedding)
self.index.append(chunk)
if (i+1) % 10 == 0 or (i+1) == len(chunks):
self.logger(f"[RAG] تم معالجة {i+1}/{len(chunks)} مقاطع.")
self.chunk_embeddings = np.array(self.chunk_embeddings)
dim = self.chunk_embeddings.shape[1] if len(self.chunk_embeddings) > 0 else 0
elapsed = time.time() - start
self.logger(f"[RAG] تم بناء الفهرس بأبعاد {dim} في {elapsed:.2f} ثانية.")
return "تم بناء الفهرس بنجاح."
def _dummy_embedding(self, text):
return np.random.rand(768)
def generate_answer(self, question, top_k=3):
start = time.time()
self.logger(f"[RAG] توليد إجابة للسؤال: {question}")
if len(self.index) == 0:
self.logger("[RAG] تحذير: الفهرس فارغ، الرجاء بناء الفهرس أولاً.")
return "لم يتم بناء الفهرس بعد.", []
passages = self.index[:top_k]
prompt = question + "\n\nالمراجع:\n" + "\n".join(passages)
inputs = self.tokenizer(prompt, return_tensors="pt")
output = self.generator.generate(inputs.input_ids, max_new_tokens=150, do_sample=True)
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
elapsed = time.time() - start
self.logger(f"[RAG] تم توليد الإجابة في {elapsed:.2f} ثانية.")
return response, passages