File size: 22,163 Bytes
c7198da ecfe892 c7198da 6e160b1 e49783b 0de0944 e49783b 0de0944 e49783b 1b5977c 6f69d10 1b5977c ecfe892 1b5977c ecfe892 6f69d10 cd9b1ce 0de0944 cd9b1ce ecfe892 cd9b1ce 7678730 cd9b1ce ecfe892 d19905b cd9b1ce 7678730 cd9b1ce 1b5977c ecfe892 cd9b1ce 1b5977c cd9b1ce 7678730 e49783b d79a580 0de0944 d79a580 0de0944 e49783b c7198da 6f69d10 ecfe892 e49783b 6e160b1 c7198da 1b5977c b7e601b c7198da 229c30a c7198da 6f69d10 399e53c 1b5977c 6f69d10 c7198da ecfe892 6f69d10 ecfe892 c7198da ecfe892 6f69d10 ecfe892 d79a580 ecfe892 d79a580 ecfe892 c7198da ecfe892 e49783b ecfe892 1b5977c d79a580 c7198da 0de0944 d19905b c7198da 0de0944 e49783b c7198da 1b5977c c7198da 1b5977c cd9b1ce 7678730 c7198da 0de0944 c7198da 0de0944 c7198da 0de0944 c7198da cd9b1ce c7198da cd9b1ce c7198da 0de0944 c7198da d87c026 ecfe892 1b5977c d19905b 1b5977c 0de0944 1b5977c 0de0944 ecfe892 0de0944 d19905b 0de0944 d19905b 0de0944 ecfe892 0de0944 1b5977c c7198da 0de0944 1b5977c 0de0944 7678730 c7198da 0de0944 7678730 0de0944 c7198da 7678730 0de0944 7678730 0de0944 7678730 c7198da 7678730 c7198da 0de0944 7678730 0de0944 c7198da 7678730 0de0944 7678730 0de0944 7678730 0de0944 7678730 0de0944 7678730 0de0944 7678730 0de0944 7678730 0de0944 7678730 0de0944 c7198da cd9b1ce 1b5977c cd9b1ce 7678730 d19905b 7678730 d19905b b7e601b efb63bb ecfe892 efb63bb ecfe892 d19905b efb63bb 7678730 0de0944 d19905b 0de0944 7678730 0de0944 7678730 1b5977c ecfe892 1b5977c efb63bb 1b5977c efb63bb ecfe892 efb63bb ecfe892 efb63bb d19905b c7198da efb63bb ecfe892 efb63bb ecfe892 efb63bb ecfe892 c7198da efb63bb 0de0944 1b5977c ecfe892 efb63bb 7678730 efb63bb 1b5977c efb63bb 1b5977c efb63bb 1b5977c efb63bb d19905b efb63bb 7678730 0de0944 d19905b 1b5977c 0de0944 7678730 efb63bb 0de0944 efb63bb 1b5977c 0de0944 1b5977c 0de0944 ecfe892 efb63bb ecfe892 efb63bb 0de0944 7678730 efb63bb 7678730 0de0944 efb63bb 7678730 efb63bb d79a580 efb63bb d79a580 efb63bb 7678730 c7198da e49783b 0de0944 e49783b 2ebd3aa 0de0944 d19905b c7198da 6f69d10 0de0944 ecfe892 c7198da 0de0944 c7198da 77f06da 2ebd3aa efb63bb 0de0944 77f06da c7198da d19905b 0de0944 d19905b 0de0944 2ebd3aa c7198da e49783b 0de0944 7678730 c7198da 7678730 d19905b c7198da 7678730 d19905b 0de0944 c7198da 7678730 c7198da 0de0944 c7198da 77f06da 2ebd3aa 0de0944 77f06da c7198da d19905b 0de0944 c7198da d19905b 0de0944 2ebd3aa c7198da 0de0944 c7198da 0de0944 7678730 d19905b c7198da 7678730 d19905b 0de0944 c7198da 6e160b1 d79a580 6e160b1 0de0944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import os
import time
import tempfile
from typing import List, Dict, Optional, Tuple
import json
import gradio as gr
# =========================
# CONFIG – embedded samples
# =========================
SAMPLES_DIR = "samples"
EMBED_IMG = os.path.join(SAMPLES_DIR, "uav_image.jpg")
EMBED_VID = os.path.join(SAMPLES_DIR, "uav_video.mp4")
HF_TOKEN = os.getenv("HF_TOKEN", "").strip() # optional for private/gated repos
# Selectable models (public & tested paths)
MODEL_CHOICES: Dict[str, Tuple[str, str]] = {
"Multi-class (Drone/Helicopter/Airplane/Bird)":
("Javvanny/yolov8m_flying_objects_detection", "yolov8m/weights/best.pt"),
"Drone-only (cleaner, fewer false positives)":
("doguilmak/Drone-Detection-YOLOv8x", "weight/best.pt"),
}
# =========================
# LABELS & THREAT RULES
# =========================
LABEL_MAP = {
"Airplane": "Airplane",
"Bird": "Bird",
"Drone": "Drone",
"Helicopter": "Helicopter",
"UAV": "UAV",
"БПЛА": "UAV",
"БПЛА коптер": "Drone",
"квадрокоптер": "Drone",
"квадроcамолет": "Drone",
"самолет": "Airplane",
"вертолет": "Helicopter",
"автомобиль": "Car",
"машина": "Car",
"БПЛА самелет": "UAV Airplane",
"drone": "Drone",
}
THREAT_SET = {"drone", "uav", "airplane", "helicopter"}
def map_label(name: str) -> str:
if not isinstance(name, str):
return name
return LABEL_MAP.get(name, LABEL_MAP.get(name.lower(), name))
def translate_names_dict(names_dict: Dict[int, str]) -> Dict[int, str]:
if not isinstance(names_dict, dict):
return names_dict
return {k: map_label(v) for k, v in names_dict.items()}
def is_threat(label_en: str) -> bool:
return label_en and label_en.lower() in THREAT_SET
# =========================
# FILTERS (relaxed defaults; tighten later if needed)
# =========================
MIN_CONF = float(os.getenv("MIN_CONF", 0.30)) # post-filter confidence
MIN_AREA_PCT = float(os.getenv("MIN_AREA_PCT", 0.001)) # min box area fraction
SKY_RATIO = float(os.getenv("SKY_RATIO", 0.95)) # sky gate nearly off by default
# =========================
# LAZY GLOBAL STATE
# =========================
_model = None
_model_err = None
_model_names = None
_loaded_repo = None
_loaded_file = None
_loaded_key = None # which dropdown choice loaded
_ffmpeg_status = None
def _lazy_cv2():
import cv2
return cv2
def _ffmpeg_ok() -> bool:
global _ffmpeg_status
if _ffmpeg_status is not None:
return _ffmpeg_status
try:
cv2 = _lazy_cv2()
info = cv2.getBuildInformation()
_ffmpeg_status = ("FFMPEG:YES" in info) or ("FFMPEG: YES" in info)
except Exception:
_ffmpeg_status = False
return _ffmpeg_status
def _download_from_hf(repo_id: str, filename: str) -> str:
from huggingface_hub import hf_hub_download, login
if HF_TOKEN:
try:
login(token=HF_TOKEN)
except Exception:
pass
return hf_hub_download(repo_id=repo_id, filename=filename)
def _reset_model_cache():
global _model, _model_err, _model_names, _loaded_repo, _loaded_file
_model = None
_model_err = None
_model_names = None
_loaded_repo = None
_loaded_file = None
def _get_model(model_key: str, conf: float, iou: float):
"""Load the YOLO model selected in the dropdown."""
from ultralytics import YOLO
global _model, _model_err, _model_names, _loaded_repo, _loaded_file, _loaded_key
if _loaded_key != model_key:
_reset_model_cache()
_loaded_key = model_key
if _model is None and _model_err is None:
repo, file = MODEL_CHOICES[model_key]
last_err = None
try:
weights = _download_from_hf(repo, file)
m = YOLO(weights)
# Core overrides
m.overrides["max_det"] = 300
m.overrides["conf"] = float(conf)
m.overrides["iou"] = float(iou)
m.overrides["agnostic_nms"] = True
_model = m
_loaded_repo, _loaded_file = repo, file
try:
_model_names = m.model.names if hasattr(m, "model") else None
except Exception:
_model_names = None
except Exception as e:
last_err = e
_model = None
if _model is None:
_model_err = f"Model load failed for {repo}/{file}. Error: {last_err}"
if _model_err:
raise RuntimeError(_model_err)
# keep sliders reflected every call
_model.overrides["conf"] = float(conf)
_model.overrides["iou"] = float(iou)
_model.overrides["agnostic_nms"] = True
return _model
def _model_info_text():
repo = f"{_loaded_repo}/{_loaded_file}" if _loaded_repo else "not loaded"
try:
names = ", ".join(sorted(set(translate_names_dict(_model_names or {}).values()))) or "unknown"
except Exception:
names = "unknown"
return f"**Model:** {repo} • FFmpeg: {'Yes' if _ffmpeg_ok() else 'No'} • Python: 3.10\n\n**Classes:** {names}"
# =========================
# HELPERS
# =========================
def _results_to_rows(results) -> List[dict]:
rows: List[dict] = []
if not results:
return rows
r = results[0]
if getattr(r, "boxes", None) is None:
return rows
names_dict = getattr(r, "names", {}) or _model_names or {}
names_dict = translate_names_dict(names_dict)
import numpy as np
xyxy = r.boxes.xyxy.cpu().numpy() if hasattr(r.boxes, "xyxy") else np.zeros((0,4))
confs = r.boxes.conf.cpu().numpy() if hasattr(r.boxes, "conf") else np.zeros((0,))
clss = r.boxes.cls.cpu().numpy() if hasattr(r.boxes, "cls") else np.zeros((0,))
for i, box in enumerate(xyxy):
x1,y1,x2,y2 = [float(v) for v in box.tolist()]
cls_idx = int(clss[i]) if i < len(clss) else -1
cls_name = names_dict.get(cls_idx, str(cls_idx))
rows.append({
"class": map_label(cls_name),
"confidence": float(confs[i]) if i < len(confs) else None,
"x1": x1, "y1": y1, "x2": x2, "y2": y2,
"width": x2-x1, "height": y2-y1,
})
return rows
def _filter_rows_by_geometry(r, rows: List[dict], model_key: str) -> List[dict]:
"""
Drop low-conf, tiny, ground-region boxes.
For drone-only model, DO NOT restrict classes (some checkpoints label as 'UAV'/'drone' variants).
For multi-class, keep only classes we care about.
"""
if "Multi-class" in model_key:
allowed = {"Drone", "UAV", "Helicopter", "Airplane"}
else:
allowed = set() # no restriction for drone-only
try:
H, W = r.orig_img.shape[:2]
except Exception:
H = W = None
kept = []
for row in rows:
if row.get("confidence") is not None and row["confidence"] < MIN_CONF:
continue
cls = map_label(str(row.get("class","")))
if allowed and cls not in allowed:
continue
if H and W and (W * H) > 0:
area = row["width"] * row["height"]
if area / (W * H) < MIN_AREA_PCT:
continue
y_bottom = row["y2"]
horizon = H * SKY_RATIO
if y_bottom > horizon: # below sky line → likely ground/grass noise
continue
kept.append(row)
return kept
def _draw_annotations_bgr(bgr_img, rows: List[dict]):
"""Draw boxes ourselves so overlay matches filtered results."""
cv2 = _lazy_cv2()
out = bgr_img.copy()
for r in rows:
x1,y1,x2,y2 = int(r["x1"]), int(r["y1"]), int(r["x2"]), int(r["y2"])
cls = map_label(r["class"])
label = f'{cls} {float(r.get("confidence") or 0):.2f}'
color = (255, 128, 0) if is_threat(cls) else (0, 200, 0)
cv2.rectangle(out, (x1,y1), (x2,y2), color, 2)
(tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(out, (x1, max(0, y1- th - 6)), (x1 + tw + 6, y1), color, -1)
cv2.putText(out, label, (x1+3, y1-4), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 2, cv2.LINE_AA)
return out
# ---------- PDF builder ----------
def _save_pdf_detections(title: str, detections: List[dict], header_note: str = "", image_path: Optional[str] = None) -> str:
from reportlab.lib.pagesizes import A4
from reportlab.pdfgen import canvas
from reportlab.lib.units import cm
from reportlab.lib.utils import ImageReader
out_path = os.path.join(tempfile.gettempdir(), f"report_{int(time.time())}.pdf")
c = canvas.Canvas(out_path, pagesize=A4)
W, H = A4
margin = 2*cm
y = H - margin
c.setFont("Helvetica-Bold", 16); c.drawString(margin, y, title); y -= 0.8*cm
c.setFont("Helvetica", 11)
for line in (header_note or "").splitlines():
c.drawString(margin, y, line[:110]); y -= 0.6*cm
total = len(detections or [])
threats = sum(1 for d in (detections or []) if d.get("threat") == "Threat")
c.drawString(margin, y, f"Detections: {total} | Threats: {threats}"); y -= 0.8*cm
if image_path and os.path.exists(image_path):
try:
img = ImageReader(image_path)
max_w, max_h = W - 2*margin, 8*cm
iw, ih = img.getSize(); scale = min(max_w/iw, max_h/ih)
w, h = iw*scale, ih*scale
c.drawImage(img, margin, y - h, width=w, height=h, preserveAspectRatio=True, mask='auto')
y -= h + 0.8*cm
except Exception:
pass
c.setFont("Helvetica-Bold", 12)
c.drawString(margin + 0*cm, y, "Timestamp")
c.drawString(margin + 5.0*cm, y, "Object")
c.drawString(margin + 10.0*cm, y, "Conf.")
c.drawString(margin + 12.0*cm, y, "Threat")
y -= 0.5*cm
c.setLineWidth(0.5); c.line(margin, y, W - margin, y); y -= 0.4*cm
c.setFont("Helvetica", 11)
for d in detections or []:
if y < 2.5*cm:
c.showPage(); y = H - margin
c.setFont("Helvetica-Bold", 12)
c.drawString(margin + 0*cm, y, "Timestamp")
c.drawString(margin + 5.0*cm, y, "Object")
c.drawString(margin + 10.0*cm, y, "Conf.")
c.drawString(margin + 12.0*cm, y, "Threat")
y -= 0.5*cm
c.setLineWidth(0.5); c.line(margin, y, W - margin, y); y -= 0.4*cm
c.setFont("Helvetica", 11)
ts = str(d.get("time",""))
obj = str(d.get("object",""))
conf = d.get("confidence"); conf_s = f"{conf:.2f}" if isinstance(conf,(int,float)) else "-"
thr = str(d.get("threat",""))
c.drawString(margin + 0*cm, y, ts[:20])
c.drawString(margin + 5.0*cm, y, obj[:20])
c.drawString(margin + 10.0*cm, y, conf_s)
c.drawString(margin + 12.0*cm, y, thr)
y -= 0.55*cm
c.showPage(); c.save()
return out_path
def _apply_english_overlay(r):
try:
if hasattr(r, "names") and isinstance(r.names, dict):
r.names = translate_names_dict(r.names)
except Exception:
pass
# =========================
# INFERENCE (filters toggle + imgsz=1280 + debug)
# =========================
def detect_image_safe(model_key: str, image, conf: float, iou: float, bypass_filters: bool = True):
try:
if image is None:
return None, [], "⚠️ No image provided.", [], None, _model_info_text()
cv2 = _lazy_cv2()
model = _get_model(model_key, conf, iou)
results = model.predict(image, imgsz=1280, verbose=False) # larger input helps tiny drones
r = results[0]
_apply_english_overlay(r)
rows_raw = _results_to_rows(results)
rows = rows_raw if bypass_filters else _filter_rows_by_geometry(r, rows_raw, model_key)
annotated_bgr = _draw_annotations_bgr(r.orig_img, rows)
now_utc = time.strftime("%Y-%m-%d %H:%M:%S UTC", time.gmtime())
det_records = [{
"time": now_utc,
"object": map_label(row["class"]),
"confidence": float(row.get("confidence") or 0.0),
"threat": "Threat" if is_threat(map_label(row["class"])) else "Non-threat",
} for row in rows]
# Debug summary shows raw vs kept counts
summary = f"raw:{len(rows_raw)} | kept:{len(rows)}"
counts = {}
for d in det_records:
counts[d["object"]] = counts.get(d["object"], 0) + 1
if counts:
summary += " • " + ", ".join(f"{k}: {v}" for k, v in counts.items())
tmp_img = os.path.join(tempfile.gettempdir(), f"annotated_{int(time.time())}.jpg")
try:
cv2.imwrite(tmp_img, annotated_bgr)
except Exception:
tmp_img = None
annotated_rgb = annotated_bgr[:, :, ::-1]
return annotated_rgb, rows, summary, det_records, tmp_img, _model_info_text()
except Exception as e:
return None, [], f"❌ Error during image detection: {e}", [], None, _model_info_text()
def detect_video_safe(model_key: str, video_path: str, conf: float, iou: float, max_frames: int = 300, bypass_filters: bool = True):
try:
if not video_path:
return None, "{}", "⚠️ No video provided.", [], _model_info_text()
cv2 = _lazy_cv2()
model = _get_model(model_key, conf, iou)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "{}", "❌ Failed to open video.", [], _model_info_text()
fps = cap.get(cv2.CAP_PROP_FPS) or 24.0
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) or 1280)
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) or 720)
out_path = os.path.join(tempfile.gettempdir(), f"annotated_{int(time.time())}.mp4")
writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
if not writer or (hasattr(writer, "isOpened") and not writer.isOpened()):
return None, "{}", "❌ Video writer could not open. Try another format/resolution.", [], _model_info_text()
det_records: List[dict] = []
frames = 0
raw_total = 0
kept_total = 0
try:
while True:
ok, frame = cap.read()
if not ok:
break
frames += 1
if frames > int(max_frames):
break
results = model.predict(frame, imgsz=1280, verbose=False)
r = results[0]
_apply_english_overlay(r)
rows_raw = _results_to_rows(results)
rows = rows_raw if bypass_filters else _filter_rows_by_geometry(r, rows_raw, model_key)
raw_total += len(rows_raw)
kept_total += len(rows)
t_sec = frames / float(fps if fps > 0 else 24.0)
for row in rows:
label = map_label(row["class"])
det_records.append({
"time": f"{t_sec:.2f}s",
"object": label,
"confidence": float(row.get("confidence") or 0.0),
"threat": "Threat" if is_threat(label) else "Non-threat",
})
annotated_bgr = _draw_annotations_bgr(frame, rows)
writer.write(annotated_bgr)
finally:
cap.release()
writer.release()
# Debug summary
counts = {}
for d in det_records:
counts[d["object"]] = counts.get(d["object"], 0) + 1
summary = f"raw:{raw_total} | kept:{kept_total}"
if counts:
summary += " • " + ", ".join(f"{k}: {v}" for k, v in sorted(counts.items()))
detections_json = json.dumps(det_records[:200], ensure_ascii=False, indent=2)
return out_path, detections_json, summary, det_records, _model_info_text()
except Exception as e:
return None, "{}", f"❌ Error during video detection: {e}", [], _model_info_text()
# ---------- PDF export ----------
def export_pdf_img(det_records: List[dict], summary: str, annotated_tmp_jpg: Optional[str]):
try:
note = summary or ""
return _save_pdf_detections(
"UAV Detector — Image Report", det_records or [], note,
image_path=annotated_tmp_jpg if annotated_tmp_jpg and os.path.exists(annotated_tmp_jpg) else None
)
except Exception as e:
return _save_pdf_detections("UAV Detector — Image Report", [], f"❌ PDF export error: {e}", None)
def export_pdf_vid(det_records, summary):
"""Be forgiving: accept list[dict], DataFrame, JSON string, or None."""
try:
# Normalize detections
if det_records is None:
det_list = []
elif isinstance(det_records, list):
det_list = det_records
elif isinstance(det_records, str):
try:
det_list = json.loads(det_records)
if not isinstance(det_list, list):
det_list = []
except Exception:
det_list = []
else:
try:
import pandas as pd
if isinstance(det_records, pd.DataFrame):
det_list = det_records.to_dict(orient="records")
else:
det_list = []
except Exception:
det_list = []
note = summary if isinstance(summary, str) else (str(summary) if summary is not None else "")
return _save_pdf_detections("UAV Detector — Video Report", det_list, note, image_path=None)
except Exception as e:
return _save_pdf_detections("UAV Detector — Video Report", [], f"❌ PDF export error: {e}", None)
# =========================
# UI
# =========================
NOTE = (
"Detections include timestamp, object, confidence, and Threat/Non-threat. "
"Use 'Bypass filters (debug)' to see raw model boxes; tighten filters after you confirm detections."
)
with gr.Blocks(title="UAV / Drone Detector (YOLO)") as demo:
gr.Markdown("# UAV / Drone Detection (Pretrained YOLO)")
gr.Markdown("Embedded samples (optional): `samples/uav_image.jpg`, `samples/uav_video.mp4`.")
with gr.Row():
model_key = gr.Dropdown(choices=list(MODEL_CHOICES.keys()),
value=list(MODEL_CHOICES.keys())[0],
label="Model")
model_info_md = gr.Markdown(value=_model_info_text())
with gr.Tabs():
# IMAGE
with gr.TabItem("Image"):
with gr.Row():
image_in = gr.Image(
value=EMBED_IMG if os.path.exists(EMBED_IMG) else None,
type="filepath",
label="Input Image"
)
with gr.Column():
conf_img = gr.Slider(0.05, 0.9, 0.25, step=0.05, label="Model Confidence")
iou_img = gr.Slider(0.1, 0.9, 0.45, step=0.05, label="NMS IoU")
filters_off_img = gr.Checkbox(value=True, label="Bypass filters (debug)")
run_img = gr.Button("Run Detection")
gr.Markdown(NOTE)
image_out = gr.Image(label="Annotated Image")
table_out = gr.Dataframe(headers=["class","confidence","x1","y1","x2","y2","width","height"])
msg_img = gr.Markdown()
pdf_img_btn = gr.Button("Generate PDF Report")
pdf_img_path = gr.File(label="PDF Report", interactive=False)
annotated_tmp_img_path = gr.State(value=None)
image_det_state = gr.State(value=[])
def _run_img(mkey, image, conf, iou, bypass):
return detect_image_safe(mkey, image, conf, iou, bypass)
run_img.click(
fn=_run_img,
inputs=[model_key, image_in, conf_img, iou_img, filters_off_img],
outputs=[image_out, table_out, msg_img, image_det_state, annotated_tmp_img_path, model_info_md],
)
pdf_img_btn.click(
fn=export_pdf_img,
inputs=[image_det_state, msg_img, annotated_tmp_img_path],
outputs=[pdf_img_path],
)
# VIDEO
with gr.TabItem("Video"):
with gr.Row():
video_in = gr.Video(
value=EMBED_VID if os.path.exists(EMBED_VID) else None,
label="Input Video"
)
with gr.Column():
conf_vid = gr.Slider(0.05, 0.9, 0.25, step=0.05, label="Model Confidence")
iou_vid = gr.Slider(0.1, 0.9, 0.45, step=0.05, label="NMS IoU")
max_frames = gr.Slider(60, 2000, 300, step=10, label="Max frames to process")
filters_off_vid = gr.Checkbox(value=True, label="Bypass filters (debug)")
run_vid = gr.Button("Run Detection")
gr.Markdown(NOTE)
video_out = gr.Video(label="Annotated Video")
detections_json_text = gr.Textbox(label="Detections (first 200)", max_lines=20)
msg_vid = gr.Markdown()
pdf_vid_btn = gr.Button("Generate PDF Report")
pdf_vid_path = gr.File(label="PDF Report", interactive=False)
video_det_state = gr.State(value=[])
def _run_vid(mkey, vpath, conf, iou, maxf, bypass):
return detect_video_safe(mkey, vpath, conf, iou, int(maxf), bypass)
run_vid.click(
fn=_run_vid,
inputs=[model_key, video_in, conf_vid, iou_vid, max_frames, filters_off_vid],
outputs=[video_out, detections_json_text, msg_vid, video_det_state, model_info_md],
)
# IMPORTANT: feed the structured state (video_det_state) to PDF — not the textbox string
pdf_vid_btn.click(
fn=export_pdf_vid,
inputs=[video_det_state, msg_vid],
outputs=[pdf_vid_path],
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)), share=True) |