File size: 5,386 Bytes
56efbc8
 
8bb81da
56efbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0cc1f
c7fba2d
db2559d
56efbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff1354
 
 
56efbc8
18c8531
776c247
0ff1354
 
 
 
 
 
 
 
 
56efbc8
3af0ebe
658a305
 
56efbc8
9d66cc0
56efbc8
 
3c23ad1
 
3af0ebe
3c23ad1
 
 
 
 
 
 
77a842a
484532b
3c23ad1
 
 
 
 
 
 
 
 
 
3af0ebe
56efbc8
 
9d66cc0
3af0ebe
2881f71
d49889f
7bf14b8
d49889f
2881f71
56efbc8
c7fba2d
56efbc8
3af0ebe
42fbee6
3af0ebe
 
caa9ec7
3af0ebe
caa9ec7
3af0ebe
 
 
411fe00
3af0ebe
caa9ec7
 
3af0ebe
56efbc8
3af0ebe
56efbc8
3af0ebe
ecbb90e
0ff1354
 
 
 
 
 
 
 
 
 
 
17efe4f
56efbc8
3af0ebe
0ff1354
eca5e51
0ff1354
 
 
56efbc8
 
3af0ebe
56efbc8
0ff1354
 
 
 
 
6e13067
56efbc8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import shlex
import subprocess
import spaces
import torch
import gradio as gr

# install packages for mamba
def install_mamba():
    #subprocess.run(shlex.split("pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118"))
    subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
    #subprocess.run(shlex.split("pip install numpy==1.26.4"))

install_mamba()

ABOUT = """
# SEMamba: Speech Enhancement
A Mamba-based model that denoises real-world audio.
Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram.
"""


import torch
import yaml
import librosa
import librosa.display
import matplotlib
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
from models.stfts    import mag_phase_stft, mag_phase_istft
from models.generator import SEMamba
from models.pcs400   import cal_pcs

ckpt = "ckpts/SEMamba_advanced.pth"
cfg_f = "recipes/SEMamba_advanced.yaml"

# load config
with open(cfg_f, 'r') as f:
    cfg = yaml.safe_load(f)


# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"
model  = SEMamba(cfg).to(device)
#sdict  = torch.load(ckpt, map_location=device)
#model.load_state_dict(sdict["generator"])
#model.eval()

@spaces.GPU
def enhance(filepath, model_name):
    # Load model based on selection
    ckpt_path = {
        "VCTK-Demand": "ckpts/SEMamba_advanced.pth",
        "VCTK+DNS": "ckpts/vd.pth"
    }[model_name]

    print("Loading:", ckpt_path)
    model.load_state_dict(torch.load(ckpt_path, map_location=device)["generator"])
    model.eval()
    with torch.no_grad():
        # load & resample
        wav, orig_sr = librosa.load(filepath, sr=None)
        noisy_wav = wav.copy()
        if orig_sr != 16000:
            wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=16000)
        x = torch.from_numpy(wav).float().to(device)
        norm = torch.sqrt(len(x)/torch.sum(x**2))
        #x = (x * norm).unsqueeze(0)
        x = (x * norm)

        # split into 4s segments (64000 samples)
        segment_len = 4 * 16000
        chunks = x.split(segment_len)
        enhanced_chunks = []

        for chunk in chunks:
            if len(chunk) < segment_len:
                #pad = torch.zeros(segment_len - len(chunk), device=chunk.device)
                pad = (torch.randn(segment_len - len(chunk), device=chunk.device) * 1e-4)
                chunk = torch.cat([chunk, pad])
            chunk = chunk.unsqueeze(0)

            amp, pha, _ = mag_phase_stft(chunk, 400, 100, 400, 0.3)
            amp2, pha2, _ = model(amp, pha)
            out = mag_phase_istft(amp2, pha2, 400, 100, 400, 0.3)
            out = (out / norm).squeeze(0)
            enhanced_chunks.append(out)

        out = torch.cat(enhanced_chunks)[:len(x)].cpu().numpy()  # trim padding

        # back to original rate
        if orig_sr != 16000:
            out = librosa.resample(out, orig_sr=16000, target_sr=orig_sr)

        # Normalize
        peak = np.max(np.abs(out))
        if peak > 0.05:
            out = out / peak * 0.85

        # write file
        sf.write("enhanced.wav", out, orig_sr)

        # spectrograms
        fig, axs = plt.subplots(1, 2, figsize=(16, 4))

        # noisy
        D_noisy = librosa.stft(noisy_wav, n_fft=512, hop_length=256)
        S_noisy = librosa.amplitude_to_db(np.abs(D_noisy), ref=np.max)
        librosa.display.specshow(S_noisy, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[0], vmax=0)
        axs[0].set_title("Noisy Spectrogram")

        # enhanced
        D_clean = librosa.stft(out, n_fft=512, hop_length=256)
        S_clean = librosa.amplitude_to_db(np.abs(D_clean), ref=np.max)
        librosa.display.specshow(S_clean, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
        #librosa.display.specshow(S_clean, sr=16000, hop_length=512, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
        axs[1].set_title("Enhanced Spectrogram")

        plt.tight_layout()

    return "enhanced.wav", fig

#with gr.Blocks() as demo:
#    gr.Markdown(ABOUT)
#    input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
#    enhance_btn = gr.Button("Enhance")
#    output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
#    plot_output = gr.Plot(label="Spectrograms")
#
#    enhance_btn.click(fn=enhance, inputs=input_audio, outputs=[output_audio, plot_output])
#
#demo.queue().launch()

with gr.Blocks() as demo:
    gr.Markdown(ABOUT)
    input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
    model_choice = gr.Radio(
        label="Choose Model (The use of VCTK+DNS is recommended)",
        choices=["VCTK-Demand", "VCTK+DNS"],
        value="VCTK-Demand"
    )
    enhance_btn = gr.Button("Enhance")
    output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
    plot_output = gr.Plot(label="Spectrograms")

    enhance_btn.click(
        fn=enhance,
        inputs=[input_audio, model_choice],
        outputs=[output_audio, plot_output]
    )
    gr.Markdown("**Note**: The current models are trained on 16kHz audio. Therefore, any input audio not sampled at 16kHz will be automatically resampled before enhancement.")

demo.queue().launch()