roychao19477
Upload
aeb6448
raw
history blame
3.24 kB
import shlex
import subprocess
import spaces
import torch
# install packages for mamba
def install_mamba():
#subprocess.run(shlex.split("pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118"))
#subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install numpy==1.26.4"))
subprocess.run(shlex.split("ls"))
install_mamba()
import gradio as gr
import torch
import yaml
import librosa
from huggingface_hub import hf_hub_download
from models.stfts import mag_phase_stft, mag_phase_istft
from models.generator import SEMamba
from models.pcs400 import cal_pcs
# download model files from your HF repo
#ckpt = hf_hub_download("rc19477/Speech_Enhancement_Mamba",
# "ckpts/SEMamba_advanced.pth")
#cfg_f = hf_hub_download("rc19477/Speech_Enhancement_Mamba",
# "recipes/SEMamba_advanced.yaml")
ckpt = "ckpts/SEMamba_advanced.pth"
cfg_f = "recipes/SEMamba_advanced.yaml"
# load config
with open(cfg_f) as f:
cfg = yaml.safe_load(f)
stft_cfg = cfg["stft_cfg"]
model_cfg = cfg["model_cfg"]
sr = stft_cfg["sampling_rate"]
n_fft = stft_cfg["n_fft"]
hop_size = stft_cfg["hop_size"]
win_size = stft_cfg["win_size"]
compress_ff = model_cfg["compress_factor"]
# init model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SEMamba(cfg).to(device)
sdict = torch.load(ckpt, map_location=device)
model.load_state_dict(sdict["generator"])
model.eval()
def enhance(audio, do_pcs):
orig_sr, wav_np = audio
# 1) resample to 16 kHz if needed
if orig_sr != sr:
wav_np = librosa.resample(wav_np, orig_sr, sr)
wav = torch.from_numpy(wav_np).float().to(device)
# normalize
norm = torch.sqrt(len(wav) / torch.sum(wav**2))
wav = (wav * norm).unsqueeze(0)
# STFT β†’ model β†’ ISTFT
amp, pha, _ = mag_phase_stft(wav, n_fft, hop_size, win_size, compress_ff)
amp_g, pha_g = model(amp, pha)
out = mag_phase_istft(amp_g, pha_g, n_fft, hop_size, win_size, compress_ff)
out = (out / norm).squeeze().cpu().numpy()
# optional PCS filter
if do_pcs:
out = cal_pcs(out)
# 2) resample back to original rate
if orig_sr != sr:
out = librosa.resample(out, sr, orig_sr)
return orig_sr, out
with gr.Blocks() as demo:
gr.Markdown("## SEMamba Speech Enhancement demo")
with gr.Row():
upload = gr.Audio(label="Upload WAV", type="numpy")
record = gr.Audio(label="Record via mic", type="numpy")
pcs = gr.Checkbox(label="Apply PCS post-processing", value=False)
btn = gr.Button("Enhance")
out = gr.Audio(label="Enhanced WAV", type="numpy")
@spaces.GPU
def runner(up, rec, do_pcs):
return enhance(up if up else rec, do_pcs)
btn.click(runner, [upload, record, pcs], out)
demo.launch()