Spaces:
Running
on
Zero
Running
on
Zero
# Reference: https://github.com/yxlu-0102/MP-SENet/blob/main/utils.py | |
import torch | |
import torch.nn as nn | |
class LearnableSigmoid1D(nn.Module): | |
""" | |
Learnable Sigmoid Activation Function for 1D inputs. | |
This module applies a learnable slope parameter to the sigmoid activation function. | |
""" | |
def __init__(self, in_features, beta=1): | |
""" | |
Initialize the LearnableSigmoid1D module. | |
Args: | |
- in_features (int): Number of input features. | |
- beta (float, optional): Scaling factor for the sigmoid function. Defaults to 1. | |
""" | |
super(LearnableSigmoid1D, self).__init__() | |
self.beta = beta | |
self.slope = nn.Parameter(torch.ones(in_features)) | |
self.slope.requires_grad = True | |
def forward(self, x): | |
""" | |
Forward pass for the LearnableSigmoid1D module. | |
Args: | |
- x (torch.Tensor): Input tensor. | |
Returns: | |
- torch.Tensor: Output tensor after applying the learnable sigmoid activation. | |
""" | |
return self.beta * torch.sigmoid(self.slope * x) | |
class LearnableSigmoid2D(nn.Module): | |
""" | |
Learnable Sigmoid Activation Function for 2D inputs. | |
This module applies a learnable slope parameter to the sigmoid activation function for 2D inputs. | |
""" | |
def __init__(self, in_features, beta=1): | |
""" | |
Initialize the LearnableSigmoid2D module. | |
Args: | |
- in_features (int): Number of input features. | |
- beta (float, optional): Scaling factor for the sigmoid function. Defaults to 1. | |
""" | |
super(LearnableSigmoid2D, self).__init__() | |
self.beta = beta | |
self.slope = nn.Parameter(torch.ones(in_features, 1)) | |
self.slope.requires_grad = True | |
def forward(self, x): | |
""" | |
Forward pass for the LearnableSigmoid2D module. | |
Args: | |
- x (torch.Tensor): Input tensor. | |
Returns: | |
- torch.Tensor: Output tensor after applying the learnable sigmoid activation. | |
""" | |
return self.beta * torch.sigmoid(self.slope * x) | |