# Reference: https://github.com/yxlu-0102/MP-SENet/blob/main/models/generator.py import torch import torch.nn as nn from einops import rearrange from .lsigmoid import LearnableSigmoid2D def get_padding(kernel_size, dilation=1): """ Calculate the padding size for a convolutional layer. Args: - kernel_size (int): Size of the convolutional kernel. - dilation (int, optional): Dilation rate of the convolution. Defaults to 1. Returns: - int: Calculated padding size. """ return int((kernel_size * dilation - dilation) / 2) def get_padding_2d(kernel_size, dilation=(1, 1)): """ Calculate the padding size for a 2D convolutional layer. Args: - kernel_size (tuple): Size of the convolutional kernel (height, width). - dilation (tuple, optional): Dilation rate of the convolution (height, width). Defaults to (1, 1). Returns: - tuple: Calculated padding size (height, width). """ return (int((kernel_size[0] * dilation[0] - dilation[0]) / 2), int((kernel_size[1] * dilation[1] - dilation[1]) / 2)) class DenseBlock(nn.Module): """ DenseBlock module consisting of multiple convolutional layers with dilation. """ def __init__(self, cfg, kernel_size=(3, 3), depth=4): super(DenseBlock, self).__init__() self.cfg = cfg self.depth = depth self.dense_block = nn.ModuleList() self.hid_feature = cfg['model_cfg']['hid_feature'] for i in range(depth): dil = 2 ** i dense_conv = nn.Sequential( nn.Conv2d(self.hid_feature * (i + 1), self.hid_feature, kernel_size, dilation=(dil, 1), padding=get_padding_2d(kernel_size, (dil, 1))), nn.InstanceNorm2d(self.hid_feature, affine=True), nn.PReLU(self.hid_feature) ) self.dense_block.append(dense_conv) def forward(self, x): """ Forward pass for the DenseBlock module. Args: - x (torch.Tensor): Input tensor. Returns: - torch.Tensor: Output tensor after processing through the dense block. """ skip = x for i in range(self.depth): x = self.dense_block[i](skip) skip = torch.cat([x, skip], dim=1) return x class DenseEncoder(nn.Module): """ DenseEncoder module consisting of initial convolution, dense block, and a final convolution. """ def __init__(self, cfg): super(DenseEncoder, self).__init__() self.cfg = cfg self.input_channel = cfg['model_cfg']['input_channel'] self.hid_feature = cfg['model_cfg']['hid_feature'] self.dense_conv_1 = nn.Sequential( nn.Conv2d(self.input_channel, self.hid_feature, (1, 1)), nn.InstanceNorm2d(self.hid_feature, affine=True), nn.PReLU(self.hid_feature) ) self.dense_block = DenseBlock(cfg, depth=4) self.dense_conv_2 = nn.Sequential( nn.Conv2d(self.hid_feature, self.hid_feature, (1, 3), stride=(1, 2)), nn.InstanceNorm2d(self.hid_feature, affine=True), nn.PReLU(self.hid_feature) ) def forward(self, x): """ Forward pass for the DenseEncoder module. Args: - x (torch.Tensor): Input tensor. Returns: - torch.Tensor: Encoded tensor. """ x = self.dense_conv_1(x) # [batch, hid_feature, time, freq] x = self.dense_block(x) # [batch, hid_feature, time, freq] x = self.dense_conv_2(x) # [batch, hid_feature, time, freq//2] return x class MagDecoder(nn.Module): """ MagDecoder module for decoding magnitude information. """ def __init__(self, cfg): super(MagDecoder, self).__init__() self.dense_block = DenseBlock(cfg, depth=4) self.hid_feature = cfg['model_cfg']['hid_feature'] self.output_channel = cfg['model_cfg']['output_channel'] self.n_fft = cfg['stft_cfg']['n_fft'] self.beta = cfg['model_cfg']['beta'] self.mask_conv = nn.Sequential( nn.ConvTranspose2d(self.hid_feature, self.hid_feature, (1, 3), stride=(1, 2)), nn.Conv2d(self.hid_feature, self.output_channel, (1, 1)), nn.InstanceNorm2d(self.output_channel, affine=True), nn.PReLU(self.output_channel), nn.Conv2d(self.output_channel, self.output_channel, (1, 1)) ) self.lsigmoid = LearnableSigmoid2D(self.n_fft // 2 + 1, beta=self.beta) def forward(self, x): """ Forward pass for the MagDecoder module. Args: - x (torch.Tensor): Input tensor. Returns: - torch.Tensor: Decoded tensor with magnitude information. """ x = self.dense_block(x) x = self.mask_conv(x) x = rearrange(x, 'b c t f -> b f t c').squeeze(-1) x = self.lsigmoid(x) x = rearrange(x, 'b f t -> b t f').unsqueeze(1) return x class PhaseDecoder(nn.Module): """ PhaseDecoder module for decoding phase information. """ def __init__(self, cfg): super(PhaseDecoder, self).__init__() self.dense_block = DenseBlock(cfg, depth=4) self.hid_feature = cfg['model_cfg']['hid_feature'] self.output_channel = cfg['model_cfg']['output_channel'] self.phase_conv = nn.Sequential( nn.ConvTranspose2d(self.hid_feature, self.hid_feature, (1, 3), stride=(1, 2)), nn.InstanceNorm2d(self.hid_feature, affine=True), nn.PReLU(self.hid_feature) ) self.phase_conv_r = nn.Conv2d(self.hid_feature, self.output_channel, (1, 1)) self.phase_conv_i = nn.Conv2d(self.hid_feature, self.output_channel, (1, 1)) def forward(self, x): """ Forward pass for the PhaseDecoder module. Args: - x (torch.Tensor): Input tensor. Returns: - torch.Tensor: Decoded tensor with phase information. """ x = self.dense_block(x) x = self.phase_conv(x) x_r = self.phase_conv_r(x) x_i = self.phase_conv_i(x) x = torch.atan2(x_i, x_r) return x