import shlex import subprocess import spaces import torch # install packages for mamba def install_mamba(): #subprocess.run(shlex.split("pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118")) #subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) subprocess.run(shlex.split("pip install numpy==1.26.4")) subprocess.run(shlex.split("ls")) install_mamba() import gradio as gr import torch import yaml import librosa from huggingface_hub import hf_hub_download from models.stfts import mag_phase_stft, mag_phase_istft from models.generator import SEMamba from models.pcs400 import cal_pcs # download model files from your HF repo #ckpt = hf_hub_download("rc19477/Speech_Enhancement_Mamba", # "ckpts/SEMamba_advanced.pth") #cfg_f = hf_hub_download("rc19477/Speech_Enhancement_Mamba", # "recipes/SEMamba_advanced.yaml") ckpt = "ckpts/SEMamba_advanced.pth" cfg_f = "recipes/SEMamba_advanced.yaml" # load config with open(cfg_f) as f: cfg = yaml.safe_load(f) stft_cfg = cfg["stft_cfg"] model_cfg = cfg["model_cfg"] sr = stft_cfg["sampling_rate"] n_fft = stft_cfg["n_fft"] hop_size = stft_cfg["hop_size"] win_size = stft_cfg["win_size"] compress_ff = model_cfg["compress_factor"] # init model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = SEMamba(cfg).to(device) sdict = torch.load(ckpt, map_location=device) model.load_state_dict(sdict["generator"]) model.eval() def enhance(audio, do_pcs): orig_sr, wav_np = audio # 1) resample to 16 kHz if needed if orig_sr != sr: wav_np = librosa.resample(wav_np, orig_sr, sr) wav = torch.from_numpy(wav_np).float().to(device) # normalize norm = torch.sqrt(len(wav) / torch.sum(wav**2)) wav = (wav * norm).unsqueeze(0) # STFT → model → ISTFT amp, pha, _ = mag_phase_stft(wav, n_fft, hop_size, win_size, compress_ff) amp_g, pha_g = model(amp, pha) out = mag_phase_istft(amp_g, pha_g, n_fft, hop_size, win_size, compress_ff) out = (out / norm).squeeze().cpu().numpy() # optional PCS filter if do_pcs: out = cal_pcs(out) # 2) resample back to original rate if orig_sr != sr: out = librosa.resample(out, sr, orig_sr) return orig_sr, out with gr.Blocks() as demo: gr.Markdown("## SEMamba Speech Enhancement demo") with gr.Row(): upload = gr.Audio(label="Upload WAV", type="numpy") record = gr.Audio(label="Record via mic", type="numpy") pcs = gr.Checkbox(label="Apply PCS post-processing", value=False) btn = gr.Button("Enhance") out = gr.Audio(label="Enhanced WAV", type="numpy") @spaces.GPU def runner(up, rec, do_pcs): return enhance(up if up else rec, do_pcs) btn.click(runner, [upload, record, pcs], out) demo.launch()