--- title: LoRACaptioner emoji: 🤠 colorFrom: red colorTo: green sdk: gradio sdk_version: 5.25.2 app_file: demo.py pinned: false --- # LoRACaptioner - **Image Captioning**: Automatically generate detailed and structured captions for your LoRA dataset. - **Prompt Optimization**: Enhance prompts during inference to achieve high-quality outputs. ## Installation ### Prerequisites - Python 3.11 or higher - [Together API](https://together.ai/) account and API key ### Setup 1. Create the virtual environment: ```bash python -m venv venv source venv/bin/activate python -m pip install -r requirements.txt ``` 2. Run inference on one set of images: ```bash python main.py --input examples/ --output output/ ```
Arguments - `--input` (str): Directory containing images to caption. - `--output` (str): Directory to save images and captions (defaults to input directory). - `--batch_images` (flag): Caption images in batches by category.
## Gradio Web Interface Launch a user-friendly web interface for captioning and prompt optimization: ```bash python demo.py ``` ### Notes - Images are processed individually in standard mode - For large collections, batch processing by category is recommended - Each caption is saved as a .txt file with the same name as the image ### Troubleshooting - **API errors**: Ensure your Together API key is set and has funds - **Image formats**: Only .png, .jpg, .jpeg, and .webp files are supported ### Examples TODO ## License [MIT License](LICENSE)