File size: 13,081 Bytes
5720799
86b116d
6015c25
86b116d
0e216c6
ac83e06
89a4312
86b116d
 
8b21538
86b116d
 
2665582
857c4c0
ac83e06
b5d5e39
 
 
 
 
758943e
86b116d
e2ee43d
86b116d
 
 
857c4c0
 
e9b4a9e
 
fde6c6f
 
ac83e06
 
e2ee43d
e9b4a9e
86b116d
2773c7a
86b116d
b5d5e39
86b116d
 
 
 
 
 
 
b127732
86b116d
 
758943e
86b116d
b5d5e39
e9b4a9e
fde6c6f
 
86b116d
fde6c6f
e9b4a9e
fde6c6f
e2ee43d
b5d5e39
fde6c6f
 
e9b4a9e
fde6c6f
 
e9b4a9e
fde6c6f
 
 
 
 
 
e9b4a9e
 
 
 
 
 
 
 
 
 
fde6c6f
e9b4a9e
fde6c6f
 
86b116d
fde6c6f
86b116d
 
b5d5e39
2773c7a
 
 
e9b4a9e
2773c7a
e9b4a9e
 
 
fde6c6f
 
 
 
 
 
e9b4a9e
fde6c6f
e9b4a9e
 
 
fde6c6f
e9b4a9e
b5d5e39
 
2773c7a
 
e9b4a9e
b5d5e39
e9b4a9e
 
 
fde6c6f
 
e9b4a9e
fde6c6f
 
 
3c74ffa
e9b4a9e
86b116d
 
 
e9b4a9e
fde6c6f
86b116d
0e216c6
 
ac83e06
0e216c6
 
 
2773c7a
 
86b116d
ac83e06
0e216c6
 
 
ac83e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e216c6
ac83e06
 
 
 
 
0e216c6
ac83e06
 
 
 
0e216c6
 
ac83e06
 
0e216c6
ac83e06
 
 
 
 
 
 
 
 
 
 
 
0e216c6
ac83e06
0e216c6
 
ac83e06
0e216c6
ac83e06
 
0e216c6
 
ac83e06
 
 
 
 
0e216c6
e9b4a9e
 
e2ee43d
e9b4a9e
 
 
2773c7a
e9b4a9e
86b116d
 
b5d5e39
2773c7a
 
 
 
 
b5d5e39
fde6c6f
86b116d
e9b4a9e
 
 
 
 
 
 
 
 
 
 
 
fde6c6f
b5d5e39
fde6c6f
e9b4a9e
 
 
 
 
 
fde6c6f
 
e9b4a9e
 
fde6c6f
e9b4a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2773c7a
e9b4a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import streamlit as st
import time
import os
import sys
import json
import asyncio
from datetime import datetime
from pathlib import Path
sys.path.append(str(Path(__file__).parent))

from utils.config import config
from core.llm import send_to_ollama, send_to_hf
from core.session import session_manager
from core.memory import check_redis_health
from core.coordinator import coordinator
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

st.set_page_config(page_title="AI Life Coach", page_icon="🧠", layout="wide")

# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []
if "last_error" not in st.session_state:
    st.session_state.last_error = ""
if "is_processing" not in st.session_state:
    st.session_state.is_processing = False
if "ngrok_url_temp" not in st.session_state:
    st.session_state.ngrok_url_temp = st.session_state.get("ngrok_url", "https://7bcc180dffd1.ngrok-free.app")
if "hf_expert_requested" not in st.session_state:
    st.session_state.hf_expert_requested = False

# Sidebar
with st.sidebar:
    st.title("AI Life Coach 🧠")
    st.markdown("Your personal AI-powered life development assistant")
    
    # Model selection
    model_options = {
        "Mistral 7B (Local)": "mistral:latest",
        "Llama 2 7B (Local)": "llama2:latest",
        "OpenChat 3.5 (Local)": "openchat:latest"
    }
    selected_model_name = st.selectbox(
        "Select Model",
        options=list(model_options.keys()),
        index=0
    )
    st.session_state.selected_model = model_options[selected_model_name]
    
    # Ollama URL input
    st.subheader("Ollama Configuration")
    ngrok_url_input = st.text_input(
        "Ollama Server URL",
        value=st.session_state.ngrok_url_temp,
        help="Enter your ngrok URL",
        key="ngrok_url_input"
    )
    
    if ngrok_url_input != st.session_state.ngrok_url_temp:
        st.session_state.ngrok_url_temp = ngrok_url_input
        st.success("βœ… URL updated!")
    
    # Test connection button
    if st.button("πŸ“‘ Test Connection"):
        try:
            import requests
            headers = {
                "ngrok-skip-browser-warning": "true",
                "User-Agent": "AI-Life-Coach-Test"
            }
            with st.spinner("Testing connection..."):
                response = requests.get(
                    f"{ngrok_url_input}/api/tags",
                    headers=headers,
                    timeout=15
                )
                if response.status_code == 200:
                    st.success("βœ… Connection successful!")
                else:
                    st.error(f"❌ Failed: {response.status_code}")
        except Exception as e:
            st.error(f"❌ Error: {str(e)[:50]}...")
    
    # Conversation history
    st.subheader("Conversation History")
    if st.button("πŸ—‘οΈ Clear History"):
        st.session_state.messages = []
        st.success("History cleared!")
    
    if st.session_state.messages:
        user_msgs = len([m for m in st.session_state.messages if m["role"] == "user"])
        ai_msgs = len([m for m in st.session_state.messages if m["role"] == "assistant"])
        st.caption(f"πŸ’¬ {user_msgs} user, {ai_msgs} AI messages")
    
    # Advanced Debug Panel (now properly collapsible)
    with st.expander("πŸ” System Monitor", expanded=False):
        st.subheader("πŸ“Š Status")
        
        # Ollama Status
        try:
            from services.ollama_monitor import check_ollama_status
            ollama_status = check_ollama_status()
            if ollama_status.get("running"):
                st.success("πŸ¦™ Ollama: Running")
            else:
                st.warning("πŸ¦™ Ollama: Not running")
        except:
            st.info("πŸ¦™ Ollama: Unknown")
        
        # HF Status
        try:
            from services.hf_endpoint_monitor import hf_monitor
            hf_status = hf_monitor.check_endpoint_status()
            if hf_status['available']:
                st.success("πŸ€— HF: Available")
            else:
                st.warning("πŸ€— HF: Not available")
        except:
            st.info("πŸ€— HF: Unknown")
        
        # Redis Status
        if check_redis_health():
            st.success("πŸ’Ύ Redis: Connected")
        else:
            st.error("πŸ’Ύ Redis: Disconnected")

# Main interface
st.title("🧠 AI Life Coach")
st.markdown("Ask me anything about personal development, goal setting, or life advice!")

# Display messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        # Format HF expert messages differently
        if message.get("source") == "hf_expert":
            st.markdown("### πŸ€– HF Expert Analysis")
            st.markdown(message["content"])
        else:
            st.markdown(message["content"])
        if "timestamp" in message:
            st.caption(f"πŸ•’ {message['timestamp']}")

# Manual HF Analysis Section
if st.session_state.messages and len(st.session_state.messages) > 0:
    st.divider()
    
    # HF Expert Section
    with st.expander("πŸ€– HF Expert Analysis", expanded=False):
        st.subheader("Deep Conversation Analysis")
        
        col1, col2 = st.columns([3, 1])
        with col1:
            st.markdown("""
            **HF Expert Features:**
            - Analyzes entire conversation history
            - Performs web research when needed
            - Provides deep insights and recommendations
            - Acts as expert consultant in your conversation
            """)
        
        with col2:
            if st.button("🧠 Activate HF Expert",
                         key="activate_hf_expert",
                         help="Send conversation to HF endpoint for deep analysis",
                         use_container_width=True,
                         disabled=st.session_state.is_processing):
                st.session_state.hf_expert_requested = True
        
        # Show HF expert analysis when requested
        if st.session_state.get("hf_expert_requested", False):
            with st.spinner("🧠 HF Expert analyzing conversation..."):
                try:
                    # Get conversation history
                    user_session = session_manager.get_session("default_user")
                    conversation_history = user_session.get("conversation", [])
                    
                    # Show what HF expert sees
                    with st.expander("πŸ“‹ HF Expert Input", expanded=False):
                        st.markdown("**Conversation History Sent to HF Expert:**")
                        for i, msg in enumerate(conversation_history[-10:]):  # Last 10 messages
                            st.markdown(f"**{msg['role'].capitalize()}:** {msg['content'][:100]}{'...' if len(msg['content']) > 100 else ''}")
                    
                    # Request HF analysis
                    hf_analysis = coordinator.manual_hf_analysis(
                        "default_user",
                        conversation_history
                    )
                    
                    if hf_analysis:
                        # Display HF expert response with clear indication
                        with st.chat_message("assistant"):
                            st.markdown("### πŸ€– HF Expert Analysis")
                            st.markdown(hf_analysis)
                        
                        # Add research/web search decisions
                        research_needs = coordinator.determine_web_search_needs(conversation_history)
                        if research_needs["needs_search"]:
                            st.info(f"πŸ” **Research Needed:** {research_needs['reasoning']}")
                            if st.button("πŸ”Ž Perform Web Research", key="web_research_button"):
                                # Perform web search
                                with st.spinner("πŸ”Ž Searching for current information..."):
                                    # Add web search logic here
                                    st.success("βœ… Web research completed!")
                        
                        # Add to message history with HF expert tag
                        st.session_state.messages.append({
                            "role": "assistant",
                            "content": hf_analysis,
                            "timestamp": datetime.now().strftime("%H:%M:%S"),
                            "source": "hf_expert",
                            "research_needs": research_needs
                        })
                        
                        st.session_state.hf_expert_requested = False
                    
                except Exception as e:
                    st.error(f"❌ HF Expert analysis failed: {str(e)}")
                    st.session_state.hf_expert_requested = False

# Chat input - FIXED VERSION
user_input = st.chat_input("Type your message here...", disabled=st.session_state.is_processing)

# Process message when received
if user_input and not st.session_state.is_processing:
    st.session_state.is_processing = True
    
    # Display user message
    with st.chat_message("user"):
        st.markdown(user_input)
    
    st.session_state.messages.append({
        "role": "user",
        "content": user_input,
        "timestamp": datetime.now().strftime("%H:%M:%S")
    })
    
    # Process AI response
    with st.chat_message("assistant"):
        response_placeholder = st.empty()
        status_placeholder = st.empty()
        
        try:
            # Get conversation history
            user_session = session_manager.get_session("default_user")
            conversation = user_session.get("conversation", [])
            conversation_history = conversation[-5:]  # Last 5 messages
            conversation_history.append({"role": "user", "content": user_input})
            
            # Try Ollama with proper error handling
            status_placeholder.info("πŸ¦™ Contacting Ollama...")
            ai_response = None
            
            try:
                ai_response = send_to_ollama(
                    user_input,
                    conversation_history,
                    st.session_state.ngrok_url_temp,
                    st.session_state.selected_model
                )
                
                if ai_response:
                    response_placeholder.markdown(ai_response)
                    status_placeholder.success("βœ… Response received!")
                else:
                    status_placeholder.warning("⚠️ Empty response from Ollama")
                    
            except Exception as ollama_error:
                status_placeholder.error(f"❌ Ollama error: {str(ollama_error)[:50]}...")
                
                # Fallback to HF if available
                if config.hf_token:
                    status_placeholder.info("πŸ”„ Trying Hugging Face...")
                    try:
                        ai_response = send_to_hf(user_input, conversation_history)
                        if ai_response:
                            response_placeholder.markdown(ai_response)
                            status_placeholder.success("βœ… HF response received!")
                        else:
                            status_placeholder.error("❌ No response from HF")
                    except Exception as hf_error:
                        status_placeholder.error(f"❌ HF also failed: {str(hf_error)[:50]}...")
            
            # Save response if successful
            if ai_response:
                # Update conversation history
                conversation.append({"role": "user", "content": user_input})
                conversation.append({"role": "assistant", "content": ai_response})
                user_session["conversation"] = conversation
                session_manager.update_session("default_user", user_session)
                
                # Add to message history
                st.session_state.messages.append({
                    "role": "assistant",
                    "content": ai_response,
                    "timestamp": datetime.now().strftime("%H:%M:%S")
                })
            else:
                st.session_state.messages.append({
                    "role": "assistant",
                    "content": "Sorry, I couldn't process your request. Please try again.",
                    "timestamp": datetime.now().strftime("%H:%M:%S")
                })
                
        except Exception as e:
            error_msg = f"System error: {str(e)}"
            response_placeholder.error(error_msg)
            st.session_state.messages.append({
                "role": "assistant",
                "content": error_msg,
                "timestamp": datetime.now().strftime("%H:%M:%S")
            })
        finally:
            st.session_state.is_processing = False
            time.sleep(0.5)  # Brief pause
            st.experimental_rerun()