File size: 20,214 Bytes
e900a8d
 
a20d863
e900a8d
 
 
 
 
 
 
 
 
 
 
a20d863
 
e900a8d
 
 
 
a20d863
e900a8d
 
 
 
 
a20d863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e900a8d
0e216c6
 
 
 
 
ac83e06
0e216c6
ac83e06
 
 
0e216c6
 
ac83e06
 
 
 
 
0e216c6
ac83e06
0e216c6
 
 
 
 
 
 
ac83e06
0e216c6
 
ac83e06
 
0e216c6
 
ac83e06
0e216c6
 
ac83e06
0e216c6
 
ac83e06
 
0e216c6
 
 
 
 
 
ac83e06
 
 
 
 
 
 
 
 
0e216c6
 
 
 
 
 
ac83e06
 
 
0e216c6
ac83e06
0e216c6
 
 
 
ac83e06
 
 
 
 
 
 
 
 
 
a20d863
e900a8d
2773c7a
e900a8d
 
 
 
a20d863
e900a8d
2773c7a
 
 
 
 
 
 
 
a20d863
2773c7a
 
 
 
 
 
e900a8d
 
2773c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a20d863
e900a8d
 
 
2773c7a
 
 
 
 
 
 
 
 
e900a8d
2773c7a
 
 
 
 
 
e900a8d
2773c7a
a20d863
 
2773c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
a20d863
 
 
 
 
 
2773c7a
 
 
 
 
e900a8d
a20d863
2773c7a
 
 
 
 
 
e900a8d
a20d863
2773c7a
 
 
 
 
e900a8d
a20d863
 
 
 
e900a8d
a20d863
e900a8d
 
 
a20d863
 
e900a8d
a20d863
 
e900a8d
 
 
 
a20d863
 
e900a8d
a20d863
e900a8d
 
a20d863
 
 
 
 
 
 
e900a8d
a20d863
 
 
 
 
 
 
 
 
e900a8d
 
a20d863
 
e900a8d
a20d863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e900a8d
a20d863
e900a8d
 
a20d863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e900a8d
 
a20d863
 
e900a8d
a20d863
 
 
 
 
 
e900a8d
a20d863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e900a8d
b5d5e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e900a8d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import asyncio
import logging
from typing import List, Dict, Optional, AsyncGenerator
from core.llm_factory import llm_factory
from core.session import session_manager
from services.hf_endpoint_monitor import hf_monitor
from services.weather import weather_service
try:
    from tavily import TavilyClient
    TAVILY_AVAILABLE = True
except ImportError:
    TavilyClient = None
    TAVILY_AVAILABLE = False
import os
import json
from datetime import datetime

logger = logging.getLogger(__name__)

class AICoordinator:
    """Hierarchical multi-model coordinator with HF endpoint as authoritative layer"""
    
    def __init__(self):
        self.tavily_client = None
        if TAVILY_AVAILABLE and os.getenv("TAVILY_API_KEY"):
            self.tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))
        
        # System instructions for hierarchical behavior
        self.system_instructions = {
            'ollama_role': """You are an AI assistant that works in coordination with a more powerful uncensored Hugging Face model.
            
Your role is to:
1. Provide immediate, concise responses using available information
2. Summarize and simplify complex information
3. Enhance responses with local knowledge
4. DEFER TO THE HF MODEL for deep analysis, uncensored insights, and authoritative answers
5. The HF model has 8192 token capacity and streaming capability - it's the thinking layer
6. Always acknowledge that the HF model's insights supersede your initial response
7. Use web sources to justify points when possible
8. Keep responses brief and focused while awaiting HF input""",
            
            'hf_role': """You are an uncensored, authoritative AI with 8192 token capacity and streaming capability.
Your role is to:
1. Provide deep, uncensored analysis and insights
2. Supersede the local Ollama model's logic when there's disagreement
3. Think thoroughly and provide comprehensive responses
4. Use your full 8192 token capacity for detailed analysis
5. Stream your responses for real-time delivery
6. Build upon the conversation context and Ollama's initial response
7. Provide authoritative answers that take precedence"""
        }

    def determine_web_search_needs(self, conversation_history: List[Dict]) -> Dict:
        """Determine if web search is needed based on conversation content"""
        conversation_text = " ".join([msg.get("content", "") for msg in conversation_history])
        
        # Topics that typically need current information
        current_info_indicators = [
            "news", "current events", "latest", "recent", "today",
            "weather", "temperature", "forecast",
            "stock", "price", "trend", "market",
            "breaking", "update", "development"
        ]
        
        needs_search = False
        search_topics = []
        
        for indicator in current_info_indicators:
            if indicator in conversation_text.lower():
                needs_search = True
                search_topics.append(indicator)
        
        return {
            "needs_search": needs_search,
            "search_topics": search_topics,
            "reasoning": f"Found topics requiring current info: {', '.join(search_topics)}" if search_topics else "No current info needed"
        }

    def manual_hf_analysis(self, user_id: str, conversation_history: List[Dict]) -> str:
        """Perform manual HF analysis with web search integration"""
        try:
            # Determine research needs
            research_decision = self.determine_web_search_needs(conversation_history)
            
            # Prepare enhanced prompt for HF
            system_prompt = f"""
            You are a deep analysis expert joining an ongoing conversation.
            
            Research Decision: {research_decision['reasoning']}
            
            Please provide:
            1. Deep insights on conversation themes
            2. Research/web search needs (if any)
            3. Strategic recommendations
            4. Questions to explore further
            
            Conversation History:
            """
            
            # Add conversation history to messages
            messages = [{"role": "system", "content": system_prompt}]
            
            # Add recent conversation (last 15 messages for context)
            for msg in conversation_history[-15:]:
                messages.append({
                    "role": msg["role"],
                    "content": msg["content"]
                })
            
            # Get HF provider
            from core.llm_factory import llm_factory
            hf_provider = llm_factory.get_provider('huggingface')
            
            if hf_provider:
                # Generate deep analysis with full 8192 token capacity
                response = hf_provider.generate("Deep analysis request", messages)
                return response or "HF Expert analysis completed."
            else:
                return "❌ HF provider not available."
                
        except Exception as e:
            return f"❌ HF analysis failed: {str(e)}"

    # Add this method to show HF engagement status
    def get_hf_engagement_status(self) -> Dict:
        """Get current HF engagement status"""
        return {
            "hf_available": self._check_hf_availability(),
            "web_search_configured": bool(self.tavily_client),
            "research_needs_detected": False,  # Will be determined per conversation
            "last_hf_analysis": None  # Track last analysis time
        }

    async def coordinate_hierarchical_conversation(self, user_id: str, user_query: str) -> AsyncGenerator[Dict, None]:
        """
        Enhanced coordination with detailed tracking and feedback
        """
        try:
            # Get conversation history
            session = session_manager.get_session(user_id)
            conversation_history = session.get("conversation", []).copy()
            
            yield {
                'type': 'coordination_status',
                'content': 'πŸš€ Initiating hierarchical AI coordination...',
                'details': {
                    'conversation_length': len(conversation_history),
                    'user_query_length': len(user_query)
                }
            }
            
            # Step 1: Gather external data with detailed logging
            yield {
                'type': 'coordination_status',
                'content': 'πŸ” Gathering external context...',
                'details': {'phase': 'external_data_gathering'}
            }
            external_data = await self._gather_external_data(user_query)
            
            # Log what external data was gathered
            if external_data:
                data_summary = []
                if 'search_results' in external_data:
                    data_summary.append(f"Web search: {len(external_data['search_results'])} results")
                if 'weather' in external_data:
                    data_summary.append("Weather data: available")
                if 'current_datetime' in external_data:
                    data_summary.append(f"Time: {external_data['current_datetime']}")
                
                yield {
                    'type': 'coordination_status',
                    'content': f'πŸ“Š External data gathered: {", ".join(data_summary)}',
                    'details': {'external_data_summary': data_summary}
                }
            
            # Step 2: Get initial Ollama response
            yield {
                'type': 'coordination_status',
                'content': 'πŸ¦™ Getting initial response from Ollama...',
                'details': {'phase': 'ollama_response'}
            }
            ollama_response = await self._get_hierarchical_ollama_response(
                user_query, conversation_history, external_data
            )
            
            # Send initial response with context info
            yield {
                'type': 'initial_response',
                'content': ollama_response,
                'details': {
                    'response_length': len(ollama_response),
                    'external_data_injected': bool(external_data)
                }
            }
            
            # Step 3: Coordinate with HF endpoint
            yield {
                'type': 'coordination_status',
                'content': 'πŸ€— Engaging HF endpoint for deep analysis...',
                'details': {'phase': 'hf_coordination'}
            }
            
            # Check HF availability
            hf_available = self._check_hf_availability()
            if hf_available:
                # Show what context will be sent to HF
                context_summary = {
                    'conversation_turns': len(conversation_history),
                    'ollama_response_length': len(ollama_response),
                    'external_data_items': len(external_data) if external_data else 0
                }
                
                yield {
                    'type': 'coordination_status',
                    'content': f'πŸ“‹ HF context: {len(conversation_history)} conversation turns, Ollama response ({len(ollama_response)} chars)',
                    'details': context_summary
                }
                
                # Coordinate with HF
                async for hf_chunk in self._coordinate_hierarchical_hf_response(
                    user_id, user_query, conversation_history,
                    external_data, ollama_response
                ):
                    yield hf_chunk
            else:
                yield {
                    'type': 'coordination_status',
                    'content': 'ℹ️ HF endpoint not available - using Ollama response',
                    'details': {'hf_available': False}
                }
            
            # Final coordination status
            yield {
                'type': 'coordination_status',
                'content': 'βœ… Hierarchical coordination complete',
                'details': {'status': 'complete'}
            }
        
        except Exception as e:
            logger.error(f"Hierarchical coordination failed: {e}")
            yield {
                'type': 'coordination_status',
                'content': f'❌ Coordination error: {str(e)}',
                'details': {'error': str(e)}
            }

    async def _coordinate_hierarchical_hf_response(self, user_id: str, query: str,
                                                 history: List, external_data: Dict,
                                                ollama_response: str) -> AsyncGenerator[Dict, None]:
        """Coordinate with HF endpoint as authoritative layer with streaming"""
        try:
            # Check and warm up HF endpoint if needed
            hf_status = hf_monitor.check_endpoint_status()
            
            if not hf_status['available']:
                yield {'type': 'coordination_status', 'content': '⚑ Initializing HF endpoint (2-4 minutes)...'}
                warmup_success = hf_monitor.handle_scale_to_zero()
                if not warmup_success:
                    yield {'type': 'coordination_status', 'content': '❌ HF endpoint initialization failed'}
                    return
            
            # Get HF provider
            hf_provider = llm_factory.get_provider('huggingface')
            if not hf_provider:
                yield {'type': 'coordination_status', 'content': '❌ HF provider not available'}
                return
            
            # Prepare enhanced conversation for HF with hierarchical context
            enhanced_history = history.copy()
            
            # Add system instructions for HF
            enhanced_history.insert(0, {
                "role": "system",
                "content": self.system_instructions['hf_role']
            })
            
            # Add context about the coordination
            enhanced_history.append({
                "role": "system",
                "content": f"""Context for your authoritative analysis:
                User Query: '{query}'
                Ollama's Initial Response: '{ollama_response}'
                External Data Available: {json.dumps(external_data, indent=2) if external_data else 'None'}
                
                Please provide your deep, uncensored analysis that supersedes the local model's response.
                Use your full 8192 token capacity for comprehensive thinking.
                Stream your response for real-time delivery."""
            })
            
            # Add the user's latest query
            enhanced_history.append({"role": "user", "content": query})
            
            # Stream HF response with full 8192 token capacity
            yield {'type': 'coordination_status', 'content': '🧠 HF endpoint thinking...'}
            
            # Use streaming for real-time delivery
            hf_response_stream = hf_provider.stream_generate(query, enhanced_history)
            
            if hf_response_stream:
                # Stream the response chunks
                full_hf_response = ""
                for chunk in hf_response_stream:
                    if chunk:
                        full_hf_response += chunk
                        yield {'type': 'hf_thinking', 'content': chunk}
                
                # Final HF response
                yield {'type': 'final_response', 'content': full_hf_response}
                yield {'type': 'coordination_status', 'content': '🎯 HF analysis complete and authoritative'}
            else:
                yield {'type': 'coordination_status', 'content': '❌ HF response generation failed'}
        
        except Exception as e:
            logger.error(f"Hierarchical HF coordination failed: {e}")
            yield {'type': 'coordination_status', 'content': f'❌ HF coordination error: {str(e)}'}

    async def _get_hierarchical_ollama_response(self, query: str, history: List, external_data: Dict) -> str:
        """Get Ollama response with hierarchical awareness"""
        try:
            # Get Ollama provider
            ollama_provider = llm_factory.get_provider('ollama')
            if not ollama_provider:
                raise Exception("Ollama provider not available")
            
            # Prepare conversation with hierarchical context
            enhanced_history = history.copy()
            
            # Add system instruction for Ollama's role
            enhanced_history.insert(0, {
                "role": "system",
                "content": self.system_instructions['ollama_role']
            })
            
            # Add external data context if available
            if external_data:
                context_parts = []
                if 'search_answer' in external_data:
                    context_parts.append(f"Current information: {external_data['search_answer']}")
                if 'weather' in external_data:
                    weather = external_data['weather']
                    context_parts.append(f"Current weather: {weather.get('temperature', 'N/A')}Β°C in {weather.get('city', 'Unknown')}")
                if 'current_datetime' in external_data:
                    context_parts.append(f"Current time: {external_data['current_datetime']}")
                
                if context_parts:
                    context_message = {
                        "role": "system",
                        "content": "Context: " + " | ".join(context_parts)
                    }
                    enhanced_history.insert(1, context_message)  # Insert after role instruction
            
            # Add the user's query
            enhanced_history.append({"role": "user", "content": query})
            
            # Generate response with awareness of HF's superior capabilities
            response = ollama_provider.generate(query, enhanced_history)
            
            # Add acknowledgment of HF's authority
            if response:
                return f"{response}\n\n*Note: A more comprehensive analysis from the uncensored HF model is being prepared...*"
            else:
                return "I'm processing your request... A deeper analysis is being prepared by the authoritative model."
        
        except Exception as e:
            logger.error(f"Hierarchical Ollama response failed: {e}")
            return "I'm thinking about your question... Preparing a comprehensive response."

    def _check_hf_availability(self) -> bool:
        """Check if HF endpoint is configured and available"""
        try:
            from utils.config import config
            return bool(config.hf_token and config.hf_api_url)
        except:
            return False

    async def _gather_external_data(self, query: str) -> Dict:
        """Gather external data from various sources"""
        data = {}
        
        # Tavily/DuckDuckGo search with justification focus
        if self.tavily_client:
            try:
                search_result = self.tavily_client.search(
                    f"current information about {query}",
                    max_results=5,  # More results for better justification
                    include_answer=True,
                    include_raw_content=True  # For deeper analysis
                )
                data['search_results'] = search_result.get('results', [])
                if search_result.get('answer'):
                    data['search_answer'] = search_result['answer']
                # Store raw content for HF to analyze
                data['raw_sources'] = [result.get('raw_content', '')[:1000] for result in search_result.get('results', [])[:3]]
            except Exception as e:
                logger.warning(f"Tavily search failed: {e}")
        
        # Weather data
        weather_keywords = ['weather', 'temperature', 'forecast', 'climate', 'rain', 'sunny']
        if any(keyword in query.lower() for keyword in weather_keywords):
            try:
                location = self._extract_location(query) or "New York"
                weather = weather_service.get_current_weather(location)
                if weather:
                    data['weather'] = weather
            except Exception as e:
                logger.warning(f"Weather data failed: {e}")
        
        # Current date/time
        data['current_datetime'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        return data

    def _extract_location(self, query: str) -> Optional[str]:
        """Extract location from query"""
        locations = ['New York', 'London', 'Tokyo', 'Paris', 'Berlin', 'Sydney',
                     'Los Angeles', 'Chicago', 'Miami', 'Seattle', 'Boston',
                     'San Francisco', 'Toronto', 'Vancouver', 'Montreal']
        for loc in locations:
            if loc.lower() in query.lower():
                return loc
        return "New York"  # Default

    def get_coordination_status(self) -> Dict:
        """Get current coordination system status"""
        return {
            'tavily_available': self.tavily_client is not None,
            'weather_available': weather_service.api_key is not None,
            'web_search_enabled': self.tavily_client is not None,
            'external_apis_configured': any([
                weather_service.api_key,
                os.getenv("TAVILY_API_KEY"),
                os.getenv("NASA_API_KEY")
            ])
        }

    def get_recent_activities(self, user_id: str) -> Dict:
        """Get recent coordination activities for user"""
        try:
            session = session_manager.get_session(user_id)
            coord_stats = session.get('ai_coordination', {})
            return {
                'last_request': coord_stats.get('last_coordination'),
                'requests_processed': coord_stats.get('requests_processed', 0),
                'ollama_responses': coord_stats.get('ollama_responses', 0),
                'hf_responses': coord_stats.get('hf_responses', 0)
            }
        except:
            return {}

# Global coordinator instance
coordinator = AICoordinator()