File size: 20,214 Bytes
e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 0e216c6 ac83e06 a20d863 e900a8d 2773c7a e900a8d a20d863 e900a8d 2773c7a a20d863 2773c7a e900a8d 2773c7a a20d863 e900a8d 2773c7a e900a8d 2773c7a e900a8d 2773c7a a20d863 2773c7a a20d863 2773c7a e900a8d a20d863 2773c7a e900a8d a20d863 2773c7a e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d a20d863 e900a8d b5d5e39 e900a8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import asyncio
import logging
from typing import List, Dict, Optional, AsyncGenerator
from core.llm_factory import llm_factory
from core.session import session_manager
from services.hf_endpoint_monitor import hf_monitor
from services.weather import weather_service
try:
from tavily import TavilyClient
TAVILY_AVAILABLE = True
except ImportError:
TavilyClient = None
TAVILY_AVAILABLE = False
import os
import json
from datetime import datetime
logger = logging.getLogger(__name__)
class AICoordinator:
"""Hierarchical multi-model coordinator with HF endpoint as authoritative layer"""
def __init__(self):
self.tavily_client = None
if TAVILY_AVAILABLE and os.getenv("TAVILY_API_KEY"):
self.tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))
# System instructions for hierarchical behavior
self.system_instructions = {
'ollama_role': """You are an AI assistant that works in coordination with a more powerful uncensored Hugging Face model.
Your role is to:
1. Provide immediate, concise responses using available information
2. Summarize and simplify complex information
3. Enhance responses with local knowledge
4. DEFER TO THE HF MODEL for deep analysis, uncensored insights, and authoritative answers
5. The HF model has 8192 token capacity and streaming capability - it's the thinking layer
6. Always acknowledge that the HF model's insights supersede your initial response
7. Use web sources to justify points when possible
8. Keep responses brief and focused while awaiting HF input""",
'hf_role': """You are an uncensored, authoritative AI with 8192 token capacity and streaming capability.
Your role is to:
1. Provide deep, uncensored analysis and insights
2. Supersede the local Ollama model's logic when there's disagreement
3. Think thoroughly and provide comprehensive responses
4. Use your full 8192 token capacity for detailed analysis
5. Stream your responses for real-time delivery
6. Build upon the conversation context and Ollama's initial response
7. Provide authoritative answers that take precedence"""
}
def determine_web_search_needs(self, conversation_history: List[Dict]) -> Dict:
"""Determine if web search is needed based on conversation content"""
conversation_text = " ".join([msg.get("content", "") for msg in conversation_history])
# Topics that typically need current information
current_info_indicators = [
"news", "current events", "latest", "recent", "today",
"weather", "temperature", "forecast",
"stock", "price", "trend", "market",
"breaking", "update", "development"
]
needs_search = False
search_topics = []
for indicator in current_info_indicators:
if indicator in conversation_text.lower():
needs_search = True
search_topics.append(indicator)
return {
"needs_search": needs_search,
"search_topics": search_topics,
"reasoning": f"Found topics requiring current info: {', '.join(search_topics)}" if search_topics else "No current info needed"
}
def manual_hf_analysis(self, user_id: str, conversation_history: List[Dict]) -> str:
"""Perform manual HF analysis with web search integration"""
try:
# Determine research needs
research_decision = self.determine_web_search_needs(conversation_history)
# Prepare enhanced prompt for HF
system_prompt = f"""
You are a deep analysis expert joining an ongoing conversation.
Research Decision: {research_decision['reasoning']}
Please provide:
1. Deep insights on conversation themes
2. Research/web search needs (if any)
3. Strategic recommendations
4. Questions to explore further
Conversation History:
"""
# Add conversation history to messages
messages = [{"role": "system", "content": system_prompt}]
# Add recent conversation (last 15 messages for context)
for msg in conversation_history[-15:]:
messages.append({
"role": msg["role"],
"content": msg["content"]
})
# Get HF provider
from core.llm_factory import llm_factory
hf_provider = llm_factory.get_provider('huggingface')
if hf_provider:
# Generate deep analysis with full 8192 token capacity
response = hf_provider.generate("Deep analysis request", messages)
return response or "HF Expert analysis completed."
else:
return "β HF provider not available."
except Exception as e:
return f"β HF analysis failed: {str(e)}"
# Add this method to show HF engagement status
def get_hf_engagement_status(self) -> Dict:
"""Get current HF engagement status"""
return {
"hf_available": self._check_hf_availability(),
"web_search_configured": bool(self.tavily_client),
"research_needs_detected": False, # Will be determined per conversation
"last_hf_analysis": None # Track last analysis time
}
async def coordinate_hierarchical_conversation(self, user_id: str, user_query: str) -> AsyncGenerator[Dict, None]:
"""
Enhanced coordination with detailed tracking and feedback
"""
try:
# Get conversation history
session = session_manager.get_session(user_id)
conversation_history = session.get("conversation", []).copy()
yield {
'type': 'coordination_status',
'content': 'π Initiating hierarchical AI coordination...',
'details': {
'conversation_length': len(conversation_history),
'user_query_length': len(user_query)
}
}
# Step 1: Gather external data with detailed logging
yield {
'type': 'coordination_status',
'content': 'π Gathering external context...',
'details': {'phase': 'external_data_gathering'}
}
external_data = await self._gather_external_data(user_query)
# Log what external data was gathered
if external_data:
data_summary = []
if 'search_results' in external_data:
data_summary.append(f"Web search: {len(external_data['search_results'])} results")
if 'weather' in external_data:
data_summary.append("Weather data: available")
if 'current_datetime' in external_data:
data_summary.append(f"Time: {external_data['current_datetime']}")
yield {
'type': 'coordination_status',
'content': f'π External data gathered: {", ".join(data_summary)}',
'details': {'external_data_summary': data_summary}
}
# Step 2: Get initial Ollama response
yield {
'type': 'coordination_status',
'content': 'π¦ Getting initial response from Ollama...',
'details': {'phase': 'ollama_response'}
}
ollama_response = await self._get_hierarchical_ollama_response(
user_query, conversation_history, external_data
)
# Send initial response with context info
yield {
'type': 'initial_response',
'content': ollama_response,
'details': {
'response_length': len(ollama_response),
'external_data_injected': bool(external_data)
}
}
# Step 3: Coordinate with HF endpoint
yield {
'type': 'coordination_status',
'content': 'π€ Engaging HF endpoint for deep analysis...',
'details': {'phase': 'hf_coordination'}
}
# Check HF availability
hf_available = self._check_hf_availability()
if hf_available:
# Show what context will be sent to HF
context_summary = {
'conversation_turns': len(conversation_history),
'ollama_response_length': len(ollama_response),
'external_data_items': len(external_data) if external_data else 0
}
yield {
'type': 'coordination_status',
'content': f'π HF context: {len(conversation_history)} conversation turns, Ollama response ({len(ollama_response)} chars)',
'details': context_summary
}
# Coordinate with HF
async for hf_chunk in self._coordinate_hierarchical_hf_response(
user_id, user_query, conversation_history,
external_data, ollama_response
):
yield hf_chunk
else:
yield {
'type': 'coordination_status',
'content': 'βΉοΈ HF endpoint not available - using Ollama response',
'details': {'hf_available': False}
}
# Final coordination status
yield {
'type': 'coordination_status',
'content': 'β
Hierarchical coordination complete',
'details': {'status': 'complete'}
}
except Exception as e:
logger.error(f"Hierarchical coordination failed: {e}")
yield {
'type': 'coordination_status',
'content': f'β Coordination error: {str(e)}',
'details': {'error': str(e)}
}
async def _coordinate_hierarchical_hf_response(self, user_id: str, query: str,
history: List, external_data: Dict,
ollama_response: str) -> AsyncGenerator[Dict, None]:
"""Coordinate with HF endpoint as authoritative layer with streaming"""
try:
# Check and warm up HF endpoint if needed
hf_status = hf_monitor.check_endpoint_status()
if not hf_status['available']:
yield {'type': 'coordination_status', 'content': 'β‘ Initializing HF endpoint (2-4 minutes)...'}
warmup_success = hf_monitor.handle_scale_to_zero()
if not warmup_success:
yield {'type': 'coordination_status', 'content': 'β HF endpoint initialization failed'}
return
# Get HF provider
hf_provider = llm_factory.get_provider('huggingface')
if not hf_provider:
yield {'type': 'coordination_status', 'content': 'β HF provider not available'}
return
# Prepare enhanced conversation for HF with hierarchical context
enhanced_history = history.copy()
# Add system instructions for HF
enhanced_history.insert(0, {
"role": "system",
"content": self.system_instructions['hf_role']
})
# Add context about the coordination
enhanced_history.append({
"role": "system",
"content": f"""Context for your authoritative analysis:
User Query: '{query}'
Ollama's Initial Response: '{ollama_response}'
External Data Available: {json.dumps(external_data, indent=2) if external_data else 'None'}
Please provide your deep, uncensored analysis that supersedes the local model's response.
Use your full 8192 token capacity for comprehensive thinking.
Stream your response for real-time delivery."""
})
# Add the user's latest query
enhanced_history.append({"role": "user", "content": query})
# Stream HF response with full 8192 token capacity
yield {'type': 'coordination_status', 'content': 'π§ HF endpoint thinking...'}
# Use streaming for real-time delivery
hf_response_stream = hf_provider.stream_generate(query, enhanced_history)
if hf_response_stream:
# Stream the response chunks
full_hf_response = ""
for chunk in hf_response_stream:
if chunk:
full_hf_response += chunk
yield {'type': 'hf_thinking', 'content': chunk}
# Final HF response
yield {'type': 'final_response', 'content': full_hf_response}
yield {'type': 'coordination_status', 'content': 'π― HF analysis complete and authoritative'}
else:
yield {'type': 'coordination_status', 'content': 'β HF response generation failed'}
except Exception as e:
logger.error(f"Hierarchical HF coordination failed: {e}")
yield {'type': 'coordination_status', 'content': f'β HF coordination error: {str(e)}'}
async def _get_hierarchical_ollama_response(self, query: str, history: List, external_data: Dict) -> str:
"""Get Ollama response with hierarchical awareness"""
try:
# Get Ollama provider
ollama_provider = llm_factory.get_provider('ollama')
if not ollama_provider:
raise Exception("Ollama provider not available")
# Prepare conversation with hierarchical context
enhanced_history = history.copy()
# Add system instruction for Ollama's role
enhanced_history.insert(0, {
"role": "system",
"content": self.system_instructions['ollama_role']
})
# Add external data context if available
if external_data:
context_parts = []
if 'search_answer' in external_data:
context_parts.append(f"Current information: {external_data['search_answer']}")
if 'weather' in external_data:
weather = external_data['weather']
context_parts.append(f"Current weather: {weather.get('temperature', 'N/A')}Β°C in {weather.get('city', 'Unknown')}")
if 'current_datetime' in external_data:
context_parts.append(f"Current time: {external_data['current_datetime']}")
if context_parts:
context_message = {
"role": "system",
"content": "Context: " + " | ".join(context_parts)
}
enhanced_history.insert(1, context_message) # Insert after role instruction
# Add the user's query
enhanced_history.append({"role": "user", "content": query})
# Generate response with awareness of HF's superior capabilities
response = ollama_provider.generate(query, enhanced_history)
# Add acknowledgment of HF's authority
if response:
return f"{response}\n\n*Note: A more comprehensive analysis from the uncensored HF model is being prepared...*"
else:
return "I'm processing your request... A deeper analysis is being prepared by the authoritative model."
except Exception as e:
logger.error(f"Hierarchical Ollama response failed: {e}")
return "I'm thinking about your question... Preparing a comprehensive response."
def _check_hf_availability(self) -> bool:
"""Check if HF endpoint is configured and available"""
try:
from utils.config import config
return bool(config.hf_token and config.hf_api_url)
except:
return False
async def _gather_external_data(self, query: str) -> Dict:
"""Gather external data from various sources"""
data = {}
# Tavily/DuckDuckGo search with justification focus
if self.tavily_client:
try:
search_result = self.tavily_client.search(
f"current information about {query}",
max_results=5, # More results for better justification
include_answer=True,
include_raw_content=True # For deeper analysis
)
data['search_results'] = search_result.get('results', [])
if search_result.get('answer'):
data['search_answer'] = search_result['answer']
# Store raw content for HF to analyze
data['raw_sources'] = [result.get('raw_content', '')[:1000] for result in search_result.get('results', [])[:3]]
except Exception as e:
logger.warning(f"Tavily search failed: {e}")
# Weather data
weather_keywords = ['weather', 'temperature', 'forecast', 'climate', 'rain', 'sunny']
if any(keyword in query.lower() for keyword in weather_keywords):
try:
location = self._extract_location(query) or "New York"
weather = weather_service.get_current_weather(location)
if weather:
data['weather'] = weather
except Exception as e:
logger.warning(f"Weather data failed: {e}")
# Current date/time
data['current_datetime'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return data
def _extract_location(self, query: str) -> Optional[str]:
"""Extract location from query"""
locations = ['New York', 'London', 'Tokyo', 'Paris', 'Berlin', 'Sydney',
'Los Angeles', 'Chicago', 'Miami', 'Seattle', 'Boston',
'San Francisco', 'Toronto', 'Vancouver', 'Montreal']
for loc in locations:
if loc.lower() in query.lower():
return loc
return "New York" # Default
def get_coordination_status(self) -> Dict:
"""Get current coordination system status"""
return {
'tavily_available': self.tavily_client is not None,
'weather_available': weather_service.api_key is not None,
'web_search_enabled': self.tavily_client is not None,
'external_apis_configured': any([
weather_service.api_key,
os.getenv("TAVILY_API_KEY"),
os.getenv("NASA_API_KEY")
])
}
def get_recent_activities(self, user_id: str) -> Dict:
"""Get recent coordination activities for user"""
try:
session = session_manager.get_session(user_id)
coord_stats = session.get('ai_coordination', {})
return {
'last_request': coord_stats.get('last_coordination'),
'requests_processed': coord_stats.get('requests_processed', 0),
'ollama_responses': coord_stats.get('ollama_responses', 0),
'hf_responses': coord_stats.get('hf_responses', 0)
}
except:
return {}
# Global coordinator instance
coordinator = AICoordinator()
|