File size: 2,818 Bytes
c0ef6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import requests
from typing import Optional
from utils.config import config

class TTSService:
    """Service for converting text to speech"""
    
    def __init__(self):
        self.hf_token = config.hf_token
        self.tts_model = "facebook/fastspeech2-en-ljspeech"
        self.vocoder_model = "facebook/hifigan-universal"
        
    def synthesize_speech(self, text: str) -> Optional[bytes]:
        """
        Convert text to speech using Hugging Face API
        
        Args:
            text: Text to convert to speech
            
        Returns:
            Audio bytes or None if failed
        """
        if not self.hf_token:
            print("Hugging Face token not configured for TTS")
            return None
            
        try:
            # First, generate speech with text-to-speech model
            tts_headers = {
                "Authorization": f"Bearer {self.hf_token}"
            }
            
            tts_payload = {
                "inputs": text
            }
            
            tts_response = requests.post(
                f"https://api-inference.huggingface.co/models/{self.tts_model}",
                headers=tts_headers,
                json=tts_payload
            )
            
            if tts_response.status_code != 200:
                print(f"TTS model error: {tts_response.status_code} - {tts_response.text}")
                return None
                
            # Then, convert to audio with vocoder
            vocoder_response = requests.post(
                f"https://api-inference.huggingface.co/models/{self.vocoder_model}",
                headers=tts_headers,
                data=tts_response.content
            )
            
            if vocoder_response.status_code == 200:
                return vocoder_response.content
            else:
                print(f"Vocoder error: {vocoder_response.status_code} - {vocoder_response.text}")
                return None
                
        except Exception as e:
            print(f"Error synthesizing speech: {e}")
            return None
    
    def save_audio_file(self, text: str, filename: str) -> bool:
        """
        Synthesize speech and save to file
        
        Args:
            text: Text to convert to speech
            filename: Output filename (.wav)
            
        Returns:
            Boolean indicating success
        """
        audio_data = self.synthesize_speech(text)
        if audio_data:
            try:
                with open(filename, 'wb') as f:
                    f.write(audio_data)
                return True
            except Exception as e:
                print(f"Error saving audio file: {e}")
                return False
        return False

# Global TTS service instance
tts_service = TTSService()