rdune71's picture
Implement efficiency improvements: HF endpoint monitoring optimization, Redis connection pooling, API request caching, session management optimization, async processing, model validation caching, and config singleton pattern
28471a4
import time
import logging
from datetime import datetime
from typing import List, Dict, Optional, Union
from core.providers.base import LLMProvider
from utils.config import config
from services.weather import weather_service
logger = logging.getLogger(__name__)
try:
from openai import OpenAI
HUGGINGFACE_SDK_AVAILABLE = True
except ImportError:
HUGGINGFACE_SDK_AVAILABLE = False
OpenAI = None
class HuggingFaceProvider(LLMProvider):
"""Hugging Face LLM provider implementation with cached validation"""
def __init__(self, model_name: str, timeout: int = 30, max_retries: int = 3):
super().__init__(model_name, timeout, max_retries)
logger.info(f"Initializing HuggingFaceProvider with:")
logger.info(f" HF_API_URL: {config.hf_api_url}")
logger.info(f" HF_TOKEN SET: {bool(config.hf_token)}")
if not HUGGINGFACE_SDK_AVAILABLE:
raise ImportError("Hugging Face provider requires 'openai' package")
if not config.hf_token:
raise ValueError("HF_TOKEN not set - required for Hugging Face provider")
# Make sure NO proxies parameter is included
try:
self.client = OpenAI(
base_url=config.hf_api_url,
api_key=config.hf_token
)
logger.info("HuggingFaceProvider initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize HuggingFaceProvider: {e}")
logger.error(f"Error type: {type(e)}")
raise
# Add caching attributes for model validation
self._model_validated = False
self._last_validation = 0
self._validation_cache_duration = 300 # 5 minutes
def generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
"""Generate a response synchronously"""
try:
return self._retry_with_backoff(self._generate_impl, prompt, conversation_history)
except Exception as e:
logger.error(f"Hugging Face generation failed: {e}")
return None
def stream_generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[Union[str, List[str]]]:
"""Generate a response with streaming support"""
try:
return self._retry_with_backoff(self._stream_generate_impl, prompt, conversation_history)
except Exception as e:
logger.error(f"Hugging Face stream generation failed: {e}")
return None
def validate_model(self) -> bool:
"""Validate if the model is available with caching"""
current_time = time.time()
if (self._model_validated and
current_time - self._last_validation < self._validation_cache_duration):
return True
try:
self.client.models.list()
self._model_validated = True
self._last_validation = current_time
return True
except Exception as e:
logger.warning(f"Hugging Face model validation failed: {e}")
return False
def _generate_impl(self, prompt: str, conversation_history: List[Dict]) -> str:
"""Implementation of synchronous generation with proper configuration and context injection"""
# Inject context message with current time/date/weather
current_time = datetime.now().strftime("%A, %B %d, %Y at %I:%M %p")
weather_summary = weather_service.get_weather_summary()
context_msg = {
"role": "system",
"content": f"[Current Context: {current_time} | Weather: {weather_summary}]"
}
enhanced_history = [context_msg] + conversation_history
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=enhanced_history,
max_tokens=8192, # Set to 8192 as requested
temperature=0.7,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
return response.choices[0].message.content
except Exception as e:
# Handle scale-to-zero behavior
if self._is_scale_to_zero_error(e):
logger.info("Hugging Face endpoint is scaling up, waiting...")
time.sleep(60) # Wait for endpoint to initialize
# Retry once after waiting
response = self.client.chat.completions.create(
model=self.model_name,
messages=enhanced_history,
max_tokens=8192, # Set to 8192 as requested
temperature=0.7,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
return response.choices[0].message.content
else:
raise
def _stream_generate_impl(self, prompt: str, conversation_history: List[Dict]) -> List[str]:
"""Implementation of streaming generation with proper configuration and context injection"""
# Inject context message with current time/date/weather
current_time = datetime.now().strftime("%A, %B %d, %Y at %I:%M %p")
weather_summary = weather_service.get_weather_summary()
context_msg = {
"role": "system",
"content": f"[Current Context: {current_time} | Weather: {weather_summary}]"
}
enhanced_history = [context_msg] + conversation_history
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=enhanced_history,
max_tokens=8192, # Set to 8192 as requested
temperature=0.7,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stream=True # Enable streaming
)
chunks = []
for chunk in response:
content = chunk.choices[0].delta.content
if content:
chunks.append(content)
return chunks
except Exception as e:
# Handle scale-to-zero behavior
if self._is_scale_to_zero_error(e):
logger.info("Hugging Face endpoint is scaling up, waiting...")
time.sleep(60) # Wait for endpoint to initialize
# Retry once after waiting
response = self.client.chat.completions.create(
model=self.model_name,
messages=enhanced_history,
max_tokens=8192, # Set to 8192 as requested
temperature=0.7,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stream=True # Enable streaming
)
chunks = []
for chunk in response:
content = chunk.choices[0].delta.content
if content:
chunks.append(content)
return chunks
else:
raise
def _is_scale_to_zero_error(self, error: Exception) -> bool:
"""Check if the error is related to scale-to-zero initialization"""
error_str = str(error).lower()
scale_to_zero_indicators = [
"503",
"service unavailable",
"initializing",
"cold start"
]
return any(indicator in error_str for indicator in scale_to_zero_indicators)
def _get_weather_summary(self) -> str:
"""Get formatted weather summary"""
try:
weather = weather_service.get_current_weather_cached(
"New York",
ttl_hash=weather_service._get_ttl_hash(300)
)
if weather:
return f"{weather.get('temperature', 'N/A')}°C, {weather.get('description', 'Clear skies')}"
else:
return "Clear skies"
except:
return "Clear skies"