import time
import logging
from typing import List, Dict, Optional, Union, Tuple
from src.llm.base_provider import LLMProvider
from src.llm.hf_provider import HuggingFaceProvider
from src.llm.ollama_provider import OllamaProvider
from core.session import session_manager
from utils.config import config
logger = logging.getLogger(__name__)
class MentorProvider(LLMProvider):
"""Mentor provider that uses HF as expert and Ollama as mentor/coach"""
def __init__(self, model_name: str, timeout: int = 120, max_retries: int = 2):
super().__init__(model_name, timeout, max_retries)
self.hf_provider = None
self.ollama_provider = None
self.conversation_analyzer = ConversationAnalyzer()
# Initialize providers
try:
if config.hf_token:
self.hf_provider = HuggingFaceProvider(
model_name="DavidAU/OpenAi-GPT-oss-20b-abliterated-uncensored-NEO-Imatrix-gguf",
timeout=120
)
except Exception as e:
logger.warning(f"Failed to initialize HF provider: {e}")
try:
if config.ollama_host:
self.ollama_provider = OllamaProvider(
model_name=config.local_model_name,
timeout=60
)
except Exception as e:
logger.warning(f"Failed to initialize Ollama provider: {e}")
def generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
"""Generate response using mentor approach"""
try:
# Step 1: Get expert response from HF Endpoint
hf_response = self._get_expert_response(prompt, conversation_history)
if not hf_response:
raise Exception("HF Endpoint expert failed to provide response")
# Step 2: Get mentor analysis from Ollama
mentor_insights = self._get_mentor_analysis(
prompt,
hf_response,
conversation_history
)
# Step 3: Combine expert response with mentor insights
combined_response = self._combine_responses(hf_response, mentor_insights)
# Step 4: Store interaction for learning
self._store_interaction(prompt, hf_response, mentor_insights)
return combined_response
except Exception as e:
logger.error(f"Mentor generation failed: {e}")
# Fallback to HF only
if self.hf_provider:
try:
logger.info("Falling back to HF Endpoint only")
return self.hf_provider.generate(prompt, conversation_history)
except Exception as fallback_error:
logger.error(f"HF fallback also failed: {fallback_error}")
raise Exception(f"All providers failed: {str(e)}")
def stream_generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[Union[str, List[str]]]:
"""Stream response using mentor approach"""
try:
# For streaming, we'll stream HF response and add mentor insights at the end
if self.hf_provider:
hf_stream = self.hf_provider.stream_generate(prompt, conversation_history)
return hf_stream
else:
raise Exception("No HF provider available for streaming")
except Exception as e:
logger.error(f"Mentor stream generation failed: {e}")
raise
def _get_expert_response(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
"""Get expert response from HF Endpoint"""
if not self.hf_provider:
return None
try:
logger.info("š¤ Getting expert response from HF Endpoint...")
response = self.hf_provider.generate(prompt, conversation_history)
logger.info("ā
HF Endpoint expert response received")
return response
except Exception as e:
logger.error(f"HF Endpoint expert failed: {e}")
return None
def _get_mentor_analysis(self, user_prompt: str, hf_response: str, conversation_history: List[Dict]) -> Dict:
"""Get mentor analysis and suggestions from Ollama"""
if not self.ollama_provider:
return {}
try:
logger.info("š± Getting mentor analysis from Ollama...")
# Create mentor prompt for analysis
mentor_prompt = self._create_mentor_prompt(user_prompt, hf_response, conversation_history)
# Get mentor insights
mentor_response = self.ollama_provider.generate(mentor_prompt, [])
# Parse mentor response into structured insights
insights = self.conversation_analyzer.parse_mentor_response(mentor_response)
logger.info("ā
Ollama mentor analysis completed")
return insights
except Exception as e:
logger.warning(f"Ollama mentor analysis failed: {e}")
return {}
def _create_mentor_prompt(self, user_prompt: str, hf_response: str, conversation_history: List[Dict]) -> str:
"""Create prompt for Ollama mentor to analyze interaction"""
conversation_context = "\n".join([
f"{msg['role']}: {msg['content']}"
for msg in conversation_history[-5:] # Last 5 messages for context
])
prompt = f"""
You are an AI mentor and conversation analyst. Your job is to analyze the interaction between a user and an expert AI, then provide insightful guidance.
ANALYZE THIS INTERACTION:
User Question: "{user_prompt}"
Expert Response: "{hf_response}"
Recent Conversation Context:
{conversation_context}
PROVIDE YOUR ANALYSIS IN THIS FORMAT:
Analyze the expert's reasoning approach, depth of analysis, and problem-solving methodology.
Assess how well this response advances toward the user's likely goals based on conversation history.
Provide 2-3 thoughtful follow-up questions or research directions that would deepen understanding.
Suggest what additional information or data would be valuable to collect.
Highlight any key insights, potential blind spots, or areas needing further exploration.
Keep your analysis concise but insightful. Focus on helping the user achieve their goals through better questioning and information gathering.
"""
return prompt
def _combine_responses(self, hf_response: str, mentor_insights: Dict) -> str:
"""Combine expert response with mentor insights"""
if not mentor_insights:
return hf_response
# Format mentor insights nicely
insights_section = "\n\n--- š Mentor Insights ---\n"
if mentor_insights.get('thinking_analysis'):
insights_section += f"\nš§ **Thinking Analysis**\n{mentor_insights['thinking_analysis']}"
if mentor_insights.get('goal_progress'):
insights_section += f"\n\nšÆ **Goal Progress**\n{mentor_insights['goal_progress']}"
if mentor_insights.get('follow_up_suggestions'):
insights_section += f"\n\nš¤ **Follow-up Suggestions**\n{mentor_insights['follow_up_suggestions']}"
if mentor_insights.get('data_gathering'):
insights_section += f"\n\nš **Data to Gather**\n{mentor_insights['data_gathering']}"
if mentor_insights.get('critical_insights'):
insights_section += f"\n\nš” **Critical Insights**\n{mentor_insights['critical_insights']}"
return f"{hf_response}{insights_section}"
def _store_interaction(self, user_prompt: str, hf_response: str, mentor_insights: Dict):
"""Store interaction for learning and pattern recognition"""
try:
user_session = session_manager.get_session("default_user")
interaction_log = user_session.get("interaction_log", [])
# Create interaction record
interaction = {
"timestamp": time.time(),
"user_prompt": user_prompt,
"expert_response": hf_response,
"mentor_insights": mentor_insights,
"conversation_length": len(interaction_log)
}
# Keep last 20 interactions
interaction_log.append(interaction)
if len(interaction_log) > 20:
interaction_log = interaction_log[-20:]
user_session["interaction_log"] = interaction_log
session_manager.update_session("default_user", user_session)
except Exception as e:
logger.warning(f"Failed to store interaction: {e}")
class ConversationAnalyzer:
"""Analyzes conversation patterns and provides insights"""
def parse_mentor_response(self, mentor_response: str) -> Dict:
"""Parse mentor response into structured insights"""
if not mentor_response:
return {}
insights = {}
# Extract sections using simple parsing
sections = {
'thinking_analysis': self._extract_section(mentor_response, 'thinking_analysis'),
'goal_progress': self._extract_section(mentor_response, 'goal_progress'),
'follow_up_suggestions': self._extract_section(mentor_response, 'follow_up_suggestions'),
'data_gathering': self._extract_section(mentor_response, 'data_gathering'),
'critical_insights': self._extract_section(mentor_response, 'critical_insights')
}
# Clean up sections
for key, value in sections.items():
if value:
# Remove markdown and clean text
cleaned = value.strip()
if cleaned:
insights[key] = cleaned
return insights
def _extract_section(self, text: str, section_name: str) -> Optional[str]:
"""Extract specific section from mentor response"""
start_tag = f"<{section_name}>"
end_tag = f"{section_name}>"
start_idx = text.find(start_tag)
if start_idx == -1:
return None
start_idx += len(start_tag)
end_idx = text.find(end_tag, start_idx)
if end_idx == -1:
return None
return text[start_idx:end_idx].strip()
# Global instance
mentor_provider = MentorProvider("mentor_model")