Spaces:
Running
Running
File size: 21,526 Bytes
d5f869d 001a1f0 31935ac 0309cd8 e697ce2 0309cd8 ab6d29f 001a1f0 ab6d29f 001a1f0 bb60cf1 ab6d29f 001a1f0 bb60cf1 001a1f0 0309cd8 e697ce2 0309cd8 03da349 0309cd8 03da349 0309cd8 03da349 0309cd8 03da349 0309cd8 03da349 0309cd8 03da349 0309cd8 03da349 0309cd8 03da349 0309cd8 e697ce2 bb60cf1 ab6d29f e697ce2 ab6d29f e697ce2 001a1f0 e697ce2 001a1f0 e697ce2 1c03f5e 001a1f0 e697ce2 001a1f0 ab6d29f 001a1f0 ab6d29f 1c03f5e bb60cf1 1c03f5e ab6d29f bb60cf1 001a1f0 e697ce2 001a1f0 03da349 001a1f0 e697ce2 001a1f0 ab6d29f 001a1f0 03da349 e697ce2 001a1f0 ab6d29f e697ce2 001a1f0 e697ce2 ab6d29f 001a1f0 328f9ac ab6d29f 001a1f0 ab6d29f e697ce2 001a1f0 e697ce2 ab6d29f 31935ac bb60cf1 31935ac ab6d29f bb60cf1 e697ce2 0309cd8 e697ce2 001a1f0 1c03f5e 001a1f0 e697ce2 bb60cf1 e697ce2 1c03f5e bb60cf1 03da349 e697ce2 bb60cf1 e697ce2 bb60cf1 e697ce2 001a1f0 0309cd8 03da349 0309cd8 03da349 0309cd8 e697ce2 0309cd8 03da349 0309cd8 bb60cf1 328f9ac bb60cf1 e697ce2 0309cd8 e697ce2 001a1f0 0309cd8 e697ce2 bb60cf1 e697ce2 bb60cf1 e697ce2 001a1f0 bb60cf1 e697ce2 7274a1a 81d8a95 03da349 81d8a95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import gradio as gr
import asyncio
import threading
import queue
import os
import time
import json
from datetime import datetime
from modules.input_handler import validate_input
from modules.retriever import perform_search
from modules.context_enhancer import add_weather_context, add_space_weather_context
from modules.analyzer import analyze_with_model
from modules.formatter import format_output
from modules.citation import generate_citations, format_citations
from modules.server_cache import get_cached_result, cache_result
from modules.status_logger import log_request
from modules.server_monitor import ServerMonitor
from modules.rag.rag_chain import RAGChain
from modules.rag.vector_store import VectorStore
from langchain.docstore.document import Document
server_monitor = ServerMonitor()
rag_chain = RAGChain()
vector_store = VectorStore()
# Cat-themed greeting function
def get_cat_greeting():
"""Generate a cat-themed greeting to test if the AI is operational"""
return (
"Hello there! I'm a sophisticated AI research assistant, but right now I'm just a random cat preparing to make biscuits "
"(that's cat slang for getting ready to do something awesome!). Today is " + datetime.now().strftime("%A, %B %d, %Y") + ". "
"I'm purring with excitement to help you with your research questions! "
"Meow... what delicious knowledge shall we hunt down today? "
"Please ask me anything, and I'll pounce on the best information for you!"
)
# Startup check function optimized for Hugging Face endpoint
async def perform_startup_check():
"""Perform startup checks to verify Hugging Face endpoint status"""
try:
# Check 1: Verify Hugging Face endpoint is responding
test_prompt = "Hello, this is a startup check. Please respond with 'OK' if you're operational."
# Use a short timeout for the startup check
stream = analyze_with_model(test_prompt)
response_parts = []
# Collect first few chunks to verify operation
chunks_received = 0
for chunk in stream:
response_parts.append(chunk)
chunks_received += 1
if chunks_received >= 3: # Just need a few chunks to confirm operation
break
full_response = "".join(response_parts)
# If we got a response, server is likely operational
if full_response:
return {
"status": "operational",
"message": "β
Hugging Face endpoint is operational and ready to assist!",
"details": f"Received response: {full_response[:50]}..."
}
else:
return {
"status": "warning",
"message": "β οΈ Endpoint responded but with empty content. May need attention.",
"details": "Endpoint connection established but no content returned."
}
except Exception as e:
error_msg = str(e)
if "503" in error_msg:
return {
"status": "initializing",
"message": "β³ Hugging Face endpoint is currently initializing (503 error detected)",
"details": "The model server is warming up. Please wait approximately 5 minutes before asking questions."
}
elif "timeout" in error_msg.lower():
return {
"status": "timeout",
"message": "β° Endpoint connection timed out",
"details": "Connection to the Hugging Face model timed out. This may indicate server initialization."
}
else:
return {
"status": "error",
"message": "β Endpoint check failed",
"details": f"Error during startup check: {error_msg}"
}
# Thread-safe wrapper for startup check
class StartupCheckWrapper:
def __init__(self, coroutine):
self.coroutine = coroutine
self.result = None
self.exception = None
self.completed = False
self.thread = threading.Thread(target=self._run)
self.thread.daemon = True
self.thread.start()
def _run(self):
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
self.result = loop.run_until_complete(self.coroutine)
except Exception as e:
self.exception = e
except Exception as e:
self.exception = e
finally:
self.completed = True
def get_result(self):
if not self.completed:
return {"status": "checking", "message": "π Performing startup checks...", "details": "Please wait while we verify system status."}
if self.exception:
return {"status": "error", "message": "β Startup check failed", "details": str(self.exception)}
return self.result
def run_startup_check():
"""Run the startup check asynchronously"""
coroutine = perform_startup_check()
wrapper = StartupCheckWrapper(coroutine)
return wrapper
# Enhanced streaming with markdown support
async def research_assistant(query, history, use_rag=False):
log_request("Research started", query=query, use_rag=use_rag)
# Add typing indicator
history.append((query, "π Searching for information..."))
yield history
cached = get_cached_result(query)
if cached:
log_request("Cache hit", query=query)
history[-1] = (query, cached)
yield history
return
try:
validated_query = validate_input(query)
except ValueError as e:
error_msg = f"β οΈ Input Error: {str(e)}"
history[-1] = (query, error_msg)
yield history
return
# Run context enhancement and search in parallel
history[-1] = (query, "π Gathering context...")
yield history
# Get weather and space weather context (but don't include in prompt yet)
weather_task = asyncio.create_task(add_weather_context())
space_weather_task = asyncio.create_task(add_space_weather_context())
search_task = asyncio.create_task(asyncio.to_thread(perform_search, validated_query))
weather_data = await weather_task
space_weather_data = await space_weather_task
search_results = await search_task
# Handle search errors
if isinstance(search_results, list) and len(search_results) > 0 and "error" in search_results[0]:
error_msg = f"π Search Error: {search_results[0]['error']}"
history[-1] = (query, error_msg)
yield history
return
# Format search content for LLM
search_content = ""
answer_content = ""
for result in search_results:
if result.get("type") == "answer":
answer_content = f"Direct Answer: {result['content']}\n\n"
elif result.get("type") == "source":
search_content += f"Source: {result['content']}\n\n"
# Only include context if it seems relevant to the query
context_section = ""
lower_query = validated_query.lower()
# Check if weather might be relevant
weather_keywords = ["weather", "temperature", "climate", "rain", "snow", "sun", "storm", "wind", "humidity"]
if any(keyword in lower_query for keyword in weather_keywords):
context_section += f"\nCurrent Weather Context: {weather_data}"
# Check if space weather might be relevant
space_keywords = ["space", "solar", "sun", "satellite", "astronomy", "cosmic", "radiation", "flare"]
if any(keyword in lower_query for keyword in space_keywords):
context_section += f"\nSpace Weather Context: {space_weather_data}"
# Build the enriched input
enriched_input = f"{validated_query}\n\n{answer_content}Search Results:\n{search_content}{context_section}"
# If RAG is enabled, use it
if use_rag:
history[-1] = (query, "π Searching document database...")
yield history
rag_result = rag_chain.query(validated_query)
if rag_result["status"] == "success":
enriched_input = rag_result["prompt"]
context_section += f"\n\nDocument Context:\n" + "\n\n".join([doc.page_content for doc in rag_result["context_docs"][:2]])
server_status = server_monitor.check_server_status()
if not server_status["available"]:
wait_time = server_status["estimated_wait"]
response = (
f"β³ **Server Initializing** β³\n\n"
f"The Hugging Face model server is currently starting up. This happens automatically after periods of inactivity.\n\n"
f"**Estimated wait time: {wait_time} minutes**\n\n"
f"**What you can do:**\n"
f"- Wait for {wait_time} minutes and try again\n"
f"- Try a simpler query which might process faster\n"
f"- Check back shortly - the server will be ready soon!\n\n"
f"*Technical Details: {server_status['message']}*"
)
history[-1] = (query, response)
yield history
return
try:
history[-1] = (query, "π§ Analyzing information with Hugging Face model...")
yield history
stream = analyze_with_model(enriched_input)
full_response = ""
# Buffer for smoother streaming
buffer = ""
buffer_threshold = 20 # Characters before yielding
for chunk in stream:
buffer += chunk
# Yield when buffer is large enough or we have a complete line
if len(buffer) > buffer_threshold or '\n' in buffer:
full_response += buffer
history[-1] = (query, full_response)
yield history
buffer = ""
# Small delay for smoother streaming
await asyncio.sleep(0.01)
# Flush remaining buffer
if buffer:
full_response += buffer
history[-1] = (query, full_response)
yield history
citations = generate_citations(search_results)
citation_text = format_citations(citations)
full_output = full_response + citation_text
cache_result(query, full_output)
server_monitor.report_success()
log_request("Research completed", result_length=len(full_output))
history[-1] = (query, full_output)
yield history
except Exception as e:
server_monitor.report_failure()
error_response = f"π€ **Unexpected Error** π€\n\nAn unexpected error occurred:\n\n{str(e)}"
history[-1] = (query, error_response)
yield history
# Thread-safe wrapper for async generator
class AsyncGeneratorWrapper:
def __init__(self, async_gen):
self.async_gen = async_gen
self.queue = queue.Queue()
self.thread = threading.Thread(target=self._run)
self.thread.daemon = True
self.thread.start()
def _run(self):
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
async def consume():
try:
async for item in self.async_gen:
self.queue.put(("item", item))
except Exception as e:
self.queue.put(("error", e))
finally:
self.queue.put(("done", None))
loop.run_until_complete(consume())
except Exception as e:
self.queue.put(("error", e))
finally:
if not self.queue.empty():
_, item = self.queue.queue[-1]
if item != ("done", None):
self.queue.put(("done", None))
def __iter__(self):
return self
def __next__(self):
item_type, item = self.queue.get()
if item_type == "item":
return item
elif item_type == "error":
raise item
elif item_type == "done":
raise StopIteration
return item
def research_assistant_wrapper(query, history, use_rag):
async_gen = research_assistant(query, history, use_rag)
wrapper = AsyncGeneratorWrapper(async_gen)
return wrapper
# Document upload function
def upload_documents(files):
"""Upload and process documents for RAG"""
try:
documents = []
for file in files:
# For PDF files
if file.name.endswith('.pdf'):
from PyPDF2 import PdfReader
reader = PdfReader(file.name)
text = ""
for page in reader.pages:
text += page.extract_text()
documents.append(Document(page_content=text, metadata={"source": file.name}))
# For text files
else:
with open(file.name, 'r') as f:
text = f.read()
documents.append(Document(page_content=text, metadata={"source": file.name}))
result = vector_store.add_documents(documents)
if result["status"] == "success":
return f"β
Successfully added {result['count']} document chunks to the knowledge base!"
else:
return f"β Error adding documents: {result['message']}"
except Exception as e:
return f"β Error processing documents: {str(e)}"
# Performance dashboard data
def get_performance_stats():
"""Get performance statistics from Redis"""
try:
stats = server_monitor.get_system_stats()
if "error" in stats:
return {"status": "error", "message": stats["error"]}
# Add more detailed stats
stats["current_time"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
stats["uptime"] = "Calculating..."
return stats
except Exception as e:
return {"status": "error", "message": str(e)}
# Global variable to store startup check result
startup_check_result = None
# Gradio Interface with all enhancements
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="amber", secondary_hue="orange"),
title="AI Research Assistant"
) as demo:
# State management
chat_history = gr.State([])
gr.Markdown("# π§ AI Research Assistant")
gr.Markdown("This advanced AI assistant combines web search with contextual awareness to answer complex questions. "
"It provides weather and space weather context only when relevant to your query.")
with gr.Tabs():
with gr.TabItem("π¬ Chat"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## System Status")
status_display = gr.Markdown("π Checking system status...")
check_btn = gr.Button("π Refresh Status")
gr.Markdown("## How to Use")
gr.Markdown("""
1. Enter a research question in the input box
2. Toggle 'Use Document Knowledge' to enable RAG
3. Click Submit or press Enter
4. Watch as the response streams in real-time
5. Review sources at the end of each response
## Features
- π Web search integration
- π€οΈ Context-aware weather data (only when relevant)
- π Context-aware space weather data (only when relevant)
- π RAG (Retrieval-Augmented Generation) with document database
- β‘ Real-time streaming from Hugging Face endpoint
- π Real-time citations
""")
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=500,
label="Research Conversation",
latex_delimiters=[{"left": "$$", "right": "$$", "display": True}],
bubble_full_width=False
)
msg = gr.Textbox(
label="Research Question",
placeholder="Ask a complex research question...",
lines=3
)
use_rag = gr.Checkbox(
label="π Use Document Knowledge (RAG)",
value=False,
info="Enable to search uploaded documents for context"
)
with gr.Row():
submit_btn = gr.Button("Submit Research Query", variant="primary")
clear_btn = gr.Button("Clear Conversation")
examples = gr.Examples(
examples=[
"What are the latest developments in quantum computing?",
"How does climate change affect ocean currents?",
"Explain the significance of the James Webb Space Telescope findings",
"What are the economic implications of renewable energy adoption?",
"How do solar flares affect satellite communications?"
],
inputs=msg,
label="Example Questions"
)
with gr.TabItem("π Document Management"):
gr.Markdown("## Upload Documents for RAG")
gr.Markdown("Upload PDF or text files to add them to the knowledge base for document-based queries.")
file_upload = gr.File(
file_types=[".pdf", ".txt"],
file_count="multiple",
label="Upload Documents"
)
upload_btn = gr.Button("π€ Upload Documents")
upload_output = gr.Textbox(label="Upload Status", interactive=False)
clear_docs_btn = gr.Button("ποΈ Clear All Documents")
gr.Markdown("## Current Documents")
doc_list = gr.Textbox(
label="Document List",
value="No documents uploaded yet",
interactive=False
)
with gr.TabItem("π Performance"):
perf_refresh_btn = gr.Button("π Refresh Stats")
perf_display = gr.JSON(label="System Statistics")
def update_status():
"""Update the system status display"""
global startup_check_result
if startup_check_result is None:
startup_check_result = run_startup_check()
result = startup_check_result.get_result()
# Format status display based on result
if result["status"] == "operational":
cat_greeting = get_cat_greeting()
status_md = f"""
β
**Hugging Face endpoint is operational and ready to assist!**
πΎ **Cat Greeting:**
*{cat_greeting}*
β
**Ready for your questions!** Ask anything and I'll pounce on the best information for you.
"""
elif result["status"] == "initializing":
status_md = f"""
β³ **Hugging Face endpoint is currently initializing (503 error detected)**
β³ **Estimated wait time:** 5 minutes
While you wait, why not prepare some treats? I'll be ready to hunt for knowledge soon!
"""
elif result["status"] == "checking":
status_md = "π Performing startup checks..."
else:
status_md = f"""
β **Endpoint check failed**
π **Details:** {result["details"]}
"""
return status_md
def refresh_status():
"""Refresh the startup check"""
global startup_check_result
startup_check_result = run_startup_check()
return update_status()
def respond(message, history, use_rag_flag):
# Get streaming response
for updated_history in research_assistant_wrapper(message, history, use_rag_flag):
yield updated_history, update_status()
def clear_conversation():
return [], []
def update_performance_stats():
stats = get_performance_stats()
return stats
# Set initial status on load
demo.load(update_status, outputs=status_display)
demo.load(update_performance_stats, outputs=perf_display)
# Button interactions
check_btn.click(refresh_status, outputs=status_display)
submit_btn.click(
respond,
[msg, chat_history, use_rag],
[chatbot, status_display]
)
msg.submit(
respond,
[msg, chat_history, use_rag],
[chatbot, status_display]
)
clear_btn.click(clear_conversation, outputs=[chat_history, chatbot])
# Document management
upload_btn.click(upload_documents, file_upload, upload_output)
clear_docs_btn.click(lambda: vector_store.delete_collection(), None, upload_output)
# Performance dashboard
perf_refresh_btn.click(update_performance_stats, outputs=perf_display)
if __name__ == "__main__":
# Print public link information to logs
print("===== Application Starting =====")
print("Creating public link for Hugging Face Space...")
print("Using Hugging Face Inference API endpoint for optimal performance")
print("Once the app launches, a public link will be available")
print("================================")
# Launch with public sharing enabled
demo.launch(share=True)
|