import gradio as gr import asyncio import threading import queue import os import time import json from datetime import datetime from modules.input_handler import validate_input from modules.retriever import perform_search from modules.context_enhancer import add_weather_context, add_space_weather_context from modules.analyzer import analyze_with_model from modules.formatter import format_output from modules.citation import generate_citations, format_citations from modules.server_cache import get_cached_result, cache_result from modules.status_logger import log_request from modules.server_monitor import ServerMonitor from modules.rag.rag_chain import RAGChain from modules.rag.vector_store import VectorStore from langchain.docstore.document import Document server_monitor = ServerMonitor() rag_chain = RAGChain() vector_store = VectorStore() # Cat-themed greeting function def get_cat_greeting(): """Generate a cat-themed greeting to test if the AI is operational""" return ( "Hello there! I'm a sophisticated AI research assistant, but right now I'm just a random cat preparing to make biscuits " "(that's cat slang for getting ready to do something awesome!). Today is " + datetime.now().strftime("%A, %B %d, %Y") + ". " "I'm purring with excitement to help you with your research questions! " "Meow... what delicious knowledge shall we hunt down today? " "Please ask me anything, and I'll pounce on the best information for you!" ) # Startup check function optimized for Hugging Face endpoint async def perform_startup_check(): """Perform startup checks to verify Hugging Face endpoint status""" try: # Check 1: Verify Hugging Face endpoint is responding test_prompt = "Hello, this is a startup check. Please respond with 'OK' if you're operational." # Use a short timeout for the startup check stream = analyze_with_model(test_prompt) response_parts = [] # Collect first few chunks to verify operation chunks_received = 0 for chunk in stream: response_parts.append(chunk) chunks_received += 1 if chunks_received >= 3: # Just need a few chunks to confirm operation break full_response = "".join(response_parts) # If we got a response, server is likely operational if full_response: return { "status": "operational", "message": "✅ Hugging Face endpoint is operational and ready to assist!", "details": f"Received response: {full_response[:50]}..." } else: return { "status": "warning", "message": "⚠️ Endpoint responded but with empty content. May need attention.", "details": "Endpoint connection established but no content returned." } except Exception as e: error_msg = str(e) if "503" in error_msg: return { "status": "initializing", "message": "⏳ Hugging Face endpoint is currently initializing (503 error detected)", "details": "The model server is warming up. Please wait approximately 5 minutes before asking questions." } elif "timeout" in error_msg.lower(): return { "status": "timeout", "message": "⏰ Endpoint connection timed out", "details": "Connection to the Hugging Face model timed out. This may indicate server initialization." } else: return { "status": "error", "message": "❌ Endpoint check failed", "details": f"Error during startup check: {error_msg}" } # Thread-safe wrapper for startup check class StartupCheckWrapper: def __init__(self, coroutine): self.coroutine = coroutine self.result = None self.exception = None self.completed = False self.thread = threading.Thread(target=self._run) self.thread.daemon = True self.thread.start() def _run(self): try: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: self.result = loop.run_until_complete(self.coroutine) except Exception as e: self.exception = e except Exception as e: self.exception = e finally: self.completed = True def get_result(self): if not self.completed: return {"status": "checking", "message": "🔄 Performing startup checks...", "details": "Please wait while we verify system status."} if self.exception: return {"status": "error", "message": "❌ Startup check failed", "details": str(self.exception)} return self.result def run_startup_check(): """Run the startup check asynchronously""" coroutine = perform_startup_check() wrapper = StartupCheckWrapper(coroutine) return wrapper # Enhanced streaming with markdown support async def research_assistant(query, history, use_rag=False): log_request("Research started", query=query, use_rag=use_rag) # Add typing indicator history.append((query, "🔄 Searching for information...")) yield history cached = get_cached_result(query) if cached: log_request("Cache hit", query=query) history[-1] = (query, cached) yield history return try: validated_query = validate_input(query) except ValueError as e: error_msg = f"⚠️ Input Error: {str(e)}" history[-1] = (query, error_msg) yield history return # Run context enhancement and search in parallel history[-1] = (query, "🔍 Gathering context...") yield history # Get weather and space weather context (but don't include in prompt yet) weather_task = asyncio.create_task(add_weather_context()) space_weather_task = asyncio.create_task(add_space_weather_context()) search_task = asyncio.create_task(asyncio.to_thread(perform_search, validated_query)) weather_data = await weather_task space_weather_data = await space_weather_task search_results = await search_task # Handle search errors if isinstance(search_results, list) and len(search_results) > 0 and "error" in search_results[0]: error_msg = f"🔍 Search Error: {search_results[0]['error']}" history[-1] = (query, error_msg) yield history return # Format search content for LLM search_content = "" answer_content = "" for result in search_results: if result.get("type") == "answer": answer_content = f"Direct Answer: {result['content']}\n\n" elif result.get("type") == "source": search_content += f"Source: {result['content']}\n\n" # Only include context if it seems relevant to the query context_section = "" lower_query = validated_query.lower() # Check if weather might be relevant weather_keywords = ["weather", "temperature", "climate", "rain", "snow", "sun", "storm", "wind", "humidity"] if any(keyword in lower_query for keyword in weather_keywords): context_section += f"\nCurrent Weather Context: {weather_data}" # Check if space weather might be relevant space_keywords = ["space", "solar", "sun", "satellite", "astronomy", "cosmic", "radiation", "flare"] if any(keyword in lower_query for keyword in space_keywords): context_section += f"\nSpace Weather Context: {space_weather_data}" # Build the enriched input enriched_input = f"{validated_query}\n\n{answer_content}Search Results:\n{search_content}{context_section}" # If RAG is enabled, use it if use_rag: history[-1] = (query, "📚 Searching document database...") yield history rag_result = rag_chain.query(validated_query) if rag_result["status"] == "success": enriched_input = rag_result["prompt"] context_section += f"\n\nDocument Context:\n" + "\n\n".join([doc.page_content for doc in rag_result["context_docs"][:2]]) server_status = server_monitor.check_server_status() if not server_status["available"]: wait_time = server_status["estimated_wait"] response = ( f"⏳ **Server Initializing** ⏳\n\n" f"The Hugging Face model server is currently starting up. This happens automatically after periods of inactivity.\n\n" f"**Estimated wait time: {wait_time} minutes**\n\n" f"**What you can do:**\n" f"- Wait for {wait_time} minutes and try again\n" f"- Try a simpler query which might process faster\n" f"- Check back shortly - the server will be ready soon!\n\n" f"*Technical Details: {server_status['message']}*" ) history[-1] = (query, response) yield history return try: history[-1] = (query, "🧠 Analyzing information with Hugging Face model...") yield history stream = analyze_with_model(enriched_input) full_response = "" # Buffer for smoother streaming buffer = "" buffer_threshold = 20 # Characters before yielding for chunk in stream: buffer += chunk # Yield when buffer is large enough or we have a complete line if len(buffer) > buffer_threshold or '\n' in buffer: full_response += buffer history[-1] = (query, full_response) yield history buffer = "" # Small delay for smoother streaming await asyncio.sleep(0.01) # Flush remaining buffer if buffer: full_response += buffer history[-1] = (query, full_response) yield history citations = generate_citations(search_results) citation_text = format_citations(citations) full_output = full_response + citation_text cache_result(query, full_output) server_monitor.report_success() log_request("Research completed", result_length=len(full_output)) history[-1] = (query, full_output) yield history except Exception as e: server_monitor.report_failure() error_response = f"🤖 **Unexpected Error** 🤖\n\nAn unexpected error occurred:\n\n{str(e)}" history[-1] = (query, error_response) yield history # Thread-safe wrapper for async generator class AsyncGeneratorWrapper: def __init__(self, async_gen): self.async_gen = async_gen self.queue = queue.Queue() self.thread = threading.Thread(target=self._run) self.thread.daemon = True self.thread.start() def _run(self): try: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) async def consume(): try: async for item in self.async_gen: self.queue.put(("item", item)) except Exception as e: self.queue.put(("error", e)) finally: self.queue.put(("done", None)) loop.run_until_complete(consume()) except Exception as e: self.queue.put(("error", e)) finally: if not self.queue.empty(): _, item = self.queue.queue[-1] if item != ("done", None): self.queue.put(("done", None)) def __iter__(self): return self def __next__(self): item_type, item = self.queue.get() if item_type == "item": return item elif item_type == "error": raise item elif item_type == "done": raise StopIteration return item def research_assistant_wrapper(query, history, use_rag): async_gen = research_assistant(query, history, use_rag) wrapper = AsyncGeneratorWrapper(async_gen) return wrapper # Document upload function def upload_documents(files): """Upload and process documents for RAG""" try: documents = [] for file in files: # For PDF files if file.name.endswith('.pdf'): from PyPDF2 import PdfReader reader = PdfReader(file.name) text = "" for page in reader.pages: text += page.extract_text() documents.append(Document(page_content=text, metadata={"source": file.name})) # For text files else: with open(file.name, 'r') as f: text = f.read() documents.append(Document(page_content=text, metadata={"source": file.name})) result = vector_store.add_documents(documents) if result["status"] == "success": return f"✅ Successfully added {result['count']} document chunks to the knowledge base!" else: return f"❌ Error adding documents: {result['message']}" except Exception as e: return f"❌ Error processing documents: {str(e)}" # Performance dashboard data def get_performance_stats(): """Get performance statistics from Redis""" try: stats = server_monitor.get_system_stats() if "error" in stats: return {"status": "error", "message": stats["error"]} # Add more detailed stats stats["current_time"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S") stats["uptime"] = "Calculating..." return stats except Exception as e: return {"status": "error", "message": str(e)} # Global variable to store startup check result startup_check_result = None # Gradio Interface with all enhancements with gr.Blocks( theme=gr.themes.Soft(primary_hue="amber", secondary_hue="orange"), title="AI Research Assistant" ) as demo: # State management chat_history = gr.State([]) gr.Markdown("# 🧠 AI Research Assistant") gr.Markdown("This advanced AI assistant combines web search with contextual awareness to answer complex questions. " "It provides weather and space weather context only when relevant to your query.") with gr.Tabs(): with gr.TabItem("💬 Chat"): with gr.Row(): with gr.Column(scale=1): gr.Markdown("## System Status") status_display = gr.Markdown("🔄 Checking system status...") check_btn = gr.Button("🔁 Refresh Status") gr.Markdown("## How to Use") gr.Markdown(""" 1. Enter a research question in the input box 2. Toggle 'Use Document Knowledge' to enable RAG 3. Click Submit or press Enter 4. Watch as the response streams in real-time 5. Review sources at the end of each response ## Features - 🔍 Web search integration - 🌤️ Context-aware weather data (only when relevant) - 🌌 Context-aware space weather data (only when relevant) - 📚 RAG (Retrieval-Augmented Generation) with document database - ⚡ Real-time streaming from Hugging Face endpoint - 📚 Real-time citations """) with gr.Column(scale=2): chatbot = gr.Chatbot( height=500, label="Research Conversation", latex_delimiters=[{"left": "$$", "right": "$$", "display": True}], bubble_full_width=False ) msg = gr.Textbox( label="Research Question", placeholder="Ask a complex research question...", lines=3 ) use_rag = gr.Checkbox( label="📚 Use Document Knowledge (RAG)", value=False, info="Enable to search uploaded documents for context" ) with gr.Row(): submit_btn = gr.Button("Submit Research Query", variant="primary") clear_btn = gr.Button("Clear Conversation") examples = gr.Examples( examples=[ "What are the latest developments in quantum computing?", "How does climate change affect ocean currents?", "Explain the significance of the James Webb Space Telescope findings", "What are the economic implications of renewable energy adoption?", "How do solar flares affect satellite communications?" ], inputs=msg, label="Example Questions" ) with gr.TabItem("📚 Document Management"): gr.Markdown("## Upload Documents for RAG") gr.Markdown("Upload PDF or text files to add them to the knowledge base for document-based queries.") file_upload = gr.File( file_types=[".pdf", ".txt"], file_count="multiple", label="Upload Documents" ) upload_btn = gr.Button("📤 Upload Documents") upload_output = gr.Textbox(label="Upload Status", interactive=False) clear_docs_btn = gr.Button("🗑️ Clear All Documents") gr.Markdown("## Current Documents") doc_list = gr.Textbox( label="Document List", value="No documents uploaded yet", interactive=False ) with gr.TabItem("📊 Performance"): perf_refresh_btn = gr.Button("🔄 Refresh Stats") perf_display = gr.JSON(label="System Statistics") def update_status(): """Update the system status display""" global startup_check_result if startup_check_result is None: startup_check_result = run_startup_check() result = startup_check_result.get_result() # Format status display based on result if result["status"] == "operational": cat_greeting = get_cat_greeting() status_md = f""" ✅ **Hugging Face endpoint is operational and ready to assist!** 🐾 **Cat Greeting:** *{cat_greeting}* ✅ **Ready for your questions!** Ask anything and I'll pounce on the best information for you. """ elif result["status"] == "initializing": status_md = f""" ⏳ **Hugging Face endpoint is currently initializing (503 error detected)** ⏳ **Estimated wait time:** 5 minutes While you wait, why not prepare some treats? I'll be ready to hunt for knowledge soon! """ elif result["status"] == "checking": status_md = "🔄 Performing startup checks..." else: status_md = f""" ❌ **Endpoint check failed** 📝 **Details:** {result["details"]} """ return status_md def refresh_status(): """Refresh the startup check""" global startup_check_result startup_check_result = run_startup_check() return update_status() def respond(message, history, use_rag_flag): # Get streaming response for updated_history in research_assistant_wrapper(message, history, use_rag_flag): yield updated_history, update_status() def clear_conversation(): return [], [] def update_performance_stats(): stats = get_performance_stats() return stats # Set initial status on load demo.load(update_status, outputs=status_display) demo.load(update_performance_stats, outputs=perf_display) # Button interactions check_btn.click(refresh_status, outputs=status_display) submit_btn.click( respond, [msg, chat_history, use_rag], [chatbot, status_display] ) msg.submit( respond, [msg, chat_history, use_rag], [chatbot, status_display] ) clear_btn.click(clear_conversation, outputs=[chat_history, chatbot]) # Document management upload_btn.click(upload_documents, file_upload, upload_output) clear_docs_btn.click(lambda: vector_store.delete_collection(), None, upload_output) # Performance dashboard perf_refresh_btn.click(update_performance_stats, outputs=perf_display) if __name__ == "__main__": # Print public link information to logs print("===== Application Starting =====") print("Creating public link for Hugging Face Space...") print("Using Hugging Face Inference API endpoint for optimal performance") print("Once the app launches, a public link will be available") print("================================") # Launch with public sharing enabled demo.launch(share=True)