Spaces:
Runtime error
Runtime error
File size: 12,703 Bytes
2b7b206 9629b73 2b7b206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import os
import re
import json
import random
from functools import lru_cache
from typing import List, Tuple, Optional, Any
import gradio as gr
from huggingface_hub import InferenceClient, hf_hub_download
# -----------------------------------------------------------------------------
# Configuration
# -----------------------------------------------------------------------------
# LoRAs in the "Kontext Dev LoRAs" collection.
# NOTE: We hard-code the list for now. If the collection grows you can simply
# append new model IDs here.
LORA_MODELS: List[str] = [
# fal – original author
"fal/Watercolor-Art-Kontext-Dev-LoRA",
"fal/Pop-Art-Kontext-Dev-LoRA",
"fal/Pencil-Drawing-Kontext-Dev-LoRA",
"fal/Mosaic-Art-Kontext-Dev-LoRA",
"fal/Minimalist-Art-Kontext-Dev-LoRA",
"fal/Impressionist-Art-Kontext-Dev-LoRA",
"fal/Gouache-Art-Kontext-Dev-LoRA",
"fal/Expressive-Art-Kontext-Dev-LoRA",
"fal/Cubist-Art-Kontext-Dev-LoRA",
"fal/Collage-Art-Kontext-Dev-LoRA",
"fal/Charcoal-Art-Kontext-Dev-LoRA",
"fal/Acrylic-Art-Kontext-Dev-LoRA",
"fal/Abstract-Art-Kontext-Dev-LoRA",
"fal/Plushie-Kontext-Dev-LoRA",
"fal/Youtube-Thumbnails-Kontext-Dev-LoRA",
"fal/Broccoli-Hair-Kontext-Dev-LoRA",
"fal/Wojak-Kontext-Dev-LoRA",
"fal/3D-Game-Assets-Kontext-Dev-LoRA",
"fal/Realism-Detailer-Kontext-Dev-LoRA",
# community LoRAs
"gokaygokay/Pencil-Drawing-Kontext-Dev-LoRA",
"gokaygokay/Oil-Paint-Kontext-Dev-LoRA",
"gokaygokay/Watercolor-Kontext-Dev-LoRA",
"gokaygokay/Pastel-Flux-Kontext-Dev-LoRA",
"gokaygokay/Low-Poly-Kontext-Dev-LoRA",
"gokaygokay/Bronze-Sculpture-Kontext-Dev-LoRA",
"gokaygokay/Marble-Sculpture-Kontext-Dev-LoRA",
"gokaygokay/Light-Fix-Kontext-Dev-LoRA",
"gokaygokay/Fuse-it-Kontext-Dev-LoRA",
"ilkerzgi/Overlay-Kontext-Dev-LoRA",
]
# Optional metadata cache file. Generated by `generate_lora_metadata.py`.
METADATA_FILE = "lora_metadata.json"
def _load_metadata() -> dict:
"""Load cached preview/trigger data if the JSON file exists."""
if os.path.exists(METADATA_FILE):
try:
with open(METADATA_FILE, "r", encoding="utf-8") as fp:
return json.load(fp)
except Exception:
pass
return {}
# Token used for anonymous free quota
FREE_TOKEN_ENV = "HF_TOKEN"
FREE_REQUESTS = 10
# -----------------------------------------------------------------------------
# Utility helpers
# -----------------------------------------------------------------------------
@lru_cache(maxsize=None)
def get_client(token: str) -> InferenceClient:
"""Return cached InferenceClient instance for supplied token."""
return InferenceClient(provider="fal-ai", api_key=token)
IMG_PATTERN = re.compile(r"!\[.*?\]\((.*?)\)")
TRIGGER_PATTERN = re.compile(r"[Tt]rigger[^:]*:\s*([^\n]+)")
@lru_cache(maxsize=None)
def fetch_preview_and_trigger(model_id: str) -> Tuple[Optional[str], Optional[str]]:
"""Try to fetch a preview image URL and trigger phrase from the model card.
If unsuccessful, returns (None, None).
"""
try:
# Download README.
readme_path = hf_hub_download(repo_id=model_id, filename="README.md")
except Exception:
return None, None
image_url: Optional[str] = None
trigger_phrase: Optional[str] = None
try:
with open(readme_path, "r", encoding="utf-8") as fp:
text = fp.read()
# First image in markdown → preview
if (m := IMG_PATTERN.search(text)) is not None:
img_path = m.group(1)
if img_path.startswith("http"):
image_url = img_path
else:
image_url = f"https://huggingface.co/{model_id}/resolve/main/{img_path.lstrip('./')}"
# Try to parse trigger phrase
if (m := TRIGGER_PATTERN.search(text)) is not None:
trigger_phrase = m.group(1).strip()
except Exception:
pass
return image_url, trigger_phrase
# -----------------------------------------------------------------------------
# Core inference function
# -----------------------------------------------------------------------------
def run_lora(
input_image, # bytes or PIL.Image
prompt: str,
model_id: str,
guidance_scale: float,
token: str | None,
req_count: int,
):
"""Execute image → image generation via selected LoRA."""
if input_image is None:
raise gr.Error("Please provide an input image.")
# Determine which token we will use
if token:
api_token = token
else:
free_token = os.getenv(FREE_TOKEN_ENV)
if free_token is None:
raise gr.Error("Service not configured for free usage. Please login.")
if req_count >= FREE_REQUESTS:
raise gr.Error("Free quota exceeded – please login with your own HF account to continue.")
api_token = free_token
client = get_client(api_token)
# Gradio delivers PIL.Image by default. InferenceClient accepts bytes.
if hasattr(input_image, "tobytes"):
import io
buf = io.BytesIO()
input_image.save(buf, format="PNG")
img_bytes = buf.getvalue()
elif isinstance(input_image, bytes):
img_bytes = input_image
else:
raise gr.Error("Unsupported image format.")
output = client.image_to_image(
img_bytes,
prompt=prompt,
model=model_id,
guidance_scale=guidance_scale,
)
# Update request count only if using free token
new_count = req_count if token else req_count + 1
return output, new_count, f"Free requests remaining: {max(0, FREE_REQUESTS - new_count)}" if not token else "Logged in ✅ Unlimited"
# -----------------------------------------------------------------------------
# UI assembly
# -----------------------------------------------------------------------------
def build_interface():
# Pre-load metadata into closure for fast look-ups.
metadata_cache = _load_metadata()
# Theme & CSS
theme = gr.themes.Soft(primary_hue="violet", secondary_hue="indigo")
custom_css = """
.gradio-container {max-width: 980px; margin: auto;}
.gallery-item {border-radius: 8px; overflow: hidden;}
"""
with gr.Blocks(title="Kontext-Dev LoRA Playground", theme=theme, css=custom_css) as demo:
token_state = gr.State(value="")
request_count_state = gr.State(value=0)
# --- Authentication UI -------------------------------------------
if hasattr(gr, "LoginButton"):
login_btn = gr.LoginButton()
token_status = gr.Markdown(value=f"Not logged in – using free quota (max {FREE_REQUESTS})")
def _handle_login(login_data: Any):
"""Extract HF token from login payload returned by LoginButton."""
token: str = ""
if isinstance(login_data, dict):
token = login_data.get("access_token") or login_data.get("token") or ""
elif isinstance(login_data, str):
token = login_data
status = "Logged in ✅ Unlimited" if token else f"Not logged in – using free quota (max {FREE_REQUESTS})"
return token, status
login_btn.login(_handle_login, outputs=[token_state, token_status])
else:
# Fallback manual token input if LoginButton not available (local dev)
with gr.Accordion("🔑 Paste your HF token (optional)", open=False):
token_input = gr.Textbox(label="HF Token", type="password", placeholder="Paste your token here…")
save_token_btn = gr.Button("Save token")
token_status = gr.Markdown(value=f"Not logged in – using free quota (max {FREE_REQUESTS})")
# Handlers to store token
def _save_token(tok):
return tok or ""
def _token_status(tok):
return "Logged in ✅ Unlimited" if tok else f"Not logged in – using free quota (max {FREE_REQUESTS})"
save_token_btn.click(_save_token, inputs=token_input, outputs=token_state)
save_token_btn.click(_token_status, inputs=token_input, outputs=token_status)
gr.Markdown(
"""
# Kontext-Dev LoRA Playground
Select one of the available LoRAs from the dropdown, upload an image, tweak the prompt, and generate!
"""
)
with gr.Row():
# LEFT column – model selection + preview
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=LORA_MODELS,
value=LORA_MODELS[0],
label="Select LoRA model",
)
preview_image = gr.Image(label="Sample image", interactive=False, height=256)
trigger_text = gr.Textbox(
label="Trigger phrase (suggested)",
interactive=False,
)
# RIGHT column – user inputs
with gr.Column(scale=1):
input_image = gr.Image(
label="Input image",
type="pil",
)
prompt_box = gr.Textbox(
label="Prompt",
placeholder="Describe your transformation…",
)
guidance = gr.Slider(
minimum=1.0,
maximum=10.0,
value=2.5,
step=0.1,
label="Guidance scale",
)
generate_btn = gr.Button("🚀 Generate")
output_image = gr.Image(label="Output", interactive=False)
quota_display = gr.Markdown(value=f"Free requests remaining: {FREE_REQUESTS}")
# Showcase Gallery --------------------------------------------------
gr.Markdown("## ✨ Example outputs from selected LoRAs")
example_gallery = gr.Gallery(
label="Examples",
columns=[4],
height="auto",
elem_id="example_gallery",
)
gallery_data_state = gr.State([])
# ------------------------------------------------------------------
# Callbacks
# ------------------------------------------------------------------
def _update_preview(model_id, _meta=metadata_cache):
if model_id in _meta:
img_url = _meta[model_id].get("image_url")
trig = _meta[model_id].get("trigger_phrase")
else:
img_url, trig = fetch_preview_and_trigger(model_id)
# Fallbacks
if trig is None:
trig = "(no trigger phrase provided)"
return {
preview_image: gr.Image(value=img_url) if img_url else gr.Image(value=None),
trigger_text: gr.Textbox(value=trig),
prompt_box: gr.Textbox(value=trig),
}
model_dropdown.change(_update_preview, inputs=model_dropdown, outputs=[preview_image, trigger_text, prompt_box])
generate_btn.click(
fn=run_lora,
inputs=[input_image, prompt_box, model_dropdown, guidance, token_state, request_count_state],
outputs=[output_image, request_count_state, quota_display],
)
# Helper to populate gallery once on launch
def _load_gallery(_meta=metadata_cache):
samples = []
for model_id in LORA_MODELS:
info = _meta.get(model_id)
if info and info.get("image_url"):
samples.append([info["image_url"], model_id])
# shuffle and take first 12
random.shuffle(samples)
return samples[:12], samples[:12]
# Initialise preview and gallery on launch
demo.load(_update_preview, inputs=model_dropdown, outputs=[preview_image, trigger_text, prompt_box])
demo.load(fn=_load_gallery, inputs=None, outputs=[example_gallery, gallery_data_state])
# Handle gallery click to update dropdown
def _on_gallery_select(evt: gr.SelectData, data):
idx = evt.index
if idx is None or idx >= len(data):
return gr.Dropdown.update()
model_id = data[idx][1]
return gr.Dropdown.update(value=model_id)
example_gallery.select(_on_gallery_select, inputs=gallery_data_state, outputs=model_dropdown)
return demo
def main():
demo = build_interface()
demo.launch()
if __name__ == "__main__":
main() |