Spaces:
Running
Running
File size: 15,702 Bytes
25b4c0f 30736d4 25b4c0f 30736d4 25b4c0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os
import gradio as gr
import requests
import json
import io
from gradio.components import Image
from PIL import Image as PILImage, ImageDraw, ImageFont # This import may be needed if you're processing images
from PIL import Image
from PIL import Image
import io
import base64
def face_crop(image, face_rect):
x = face_rect.get('x')
y = face_rect.get('y')
width = face_rect.get('width')
height = face_rect.get('height')
if x < 0:
x = 0
if y < 0:
y = 0
if x + width >= image.width:
width = image.width - x
if y + height >= image.height:
height = image.height - y
face_image = image.crop((x, y, x + width - 1, y + height - 1))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
return face_image
def pil_image_to_base64(image, format="PNG"):
"""
Converts a PIL.Image object to a Base64-encoded string.
:param image: PIL.Image object
:param format: Format to save the image, e.g., "PNG", "JPEG"
:return: Base64-encoded string
"""
# Save the image to a BytesIO buffer
buffer = io.BytesIO()
image.save(buffer, format=format)
buffer.seek(0) # Rewind the buffer
# Convert the buffer's contents to a Base64 string
base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
return base64_string
def compare_face(image1, image2, verifyThreshold):
try:
img_bytes1 = io.BytesIO()
image1.save(img_bytes1, format="JPEG")
img_bytes1.seek(0)
except:
return ["Failed to open image1", {"resultCode": "Failed to open image1"}]
try:
img_bytes2 = io.BytesIO()
image2.save(img_bytes2, format="JPEG")
img_bytes2.seek(0)
except:
return ["Failed to open image2", {"resultCode": "Failed to open image2"}]
url = "http://127.0.0.1:8000/compare_face"
files = {'image1': img_bytes1, 'image2': img_bytes2}
result = requests.post(url=url, files=files)
if result.ok:
json_result = result.json()
if json_result.get("resultCode") != "Ok":
return [json_result.get("resultCode"), json_result]
html = ""
faces1 = json_result.get("faces1", {})
faces2 = json_result.get("faces2", {})
results = json_result.get("results", {})
for result in results:
score = result.get('score')
face1_idx = result.get('face1')
face2_idx = result.get('face2')
face_image1 = face_crop(image1, faces1[face1_idx])
face_value1 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image1, format="PNG"))
face_image2 = face_crop(image2, faces2[face2_idx])
face_value2 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image2, format="PNG"))
match_icon = '<svg fill="red" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.92V10.2H19V13.92H0ZM0 21.64V17.92H19V21.64H0Z"></path><path d="M14.08 0H18.08L5.08 32H1.08L14.08 0Z"></path></svg>'
if score > verifyThreshold:
match_icon = '<svg fill="green" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.9202V10.2002H19V13.9202H0ZM0 21.6402V17.9202H19V21.6402H0Z"></path></svg>'
item_value = ('<div style="align-items: center; gap: 10px; display: flex; flex-direction: column;">'
'<div style="display: flex; align-items: center; gap: 20px;">'
'{face_value1}'
'{match_icon}'
'{face_value2}'
'</div>'
'<div style="text-align: center; margin-top: 10px;">'
'Score: {score}'
'</div>'
'</div>'
).format(face_value1=face_value1, face_value2=face_value2, match_icon=match_icon, score=f"{score:.2f}")
html += item_value
html += '<hr style="border: 1px solid #C0C0C0; margin: 10px 0;"/>'
return [html, json_result]
else:
return [result.text, {"resultCode": result.text}]
def detect_face(image):
try:
img_bytes = io.BytesIO()
image.save(img_bytes, format="JPEG")
img_bytes.seek(0)
except:
return ["Failed to open image", {"resultCode": "Failed to open image"}]
url = "http://127.0.0.1:8000/detect_face"
files = {'image': img_bytes}
result = requests.post(url=url, files=files)
if result.ok:
json_result = result.json()
html = ""
resultCode = json_result.get("resultCode")
if resultCode == "Ok":
faces = json_result.get("result", {})
for face in faces:
face_rect = face.get("rect", {})
angles = face.get("angles", {})
age_gender = face.get("age_gender", {})
emotion = face.get("emotion", {})
attribute = face.get("attribute", {})
face_image = face_crop(image, face_rect)
face_value = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image, format="PNG"))
item_value = ('<div style="display: flex; justify-content: center; align-items: flex-start; margin: 10px;">'
'<div style="display: flex; align-items: flex-start; gap: 40px; ">'
'{face_value}'
'<div style="display: flex; gap: 20px; border-left: 1px solid #C0C0C0; padding-left: 20px;">'
'<div>'
'<p><b>Age</b></p>'
'<p><b>Gender</b></p>'
'<p><b>Mask</b></p>'
'<p><b>Left Eye</b></p>'
'<p><b>Right Eye</b></p>'
'<p><b>Yaw</b></p>'
'<p><b>Roll</b></p>'
'<p><b>Pitch</b></p>'
'</div>'
'<div>'
'<p>{age}</p>'
'<p>{gender}</p>'
'<p>{masked}</p>'
'<p>{left_eye}</p>'
'<p>{right_eye}</p>'
'<p>{yaw}</p>'
'<p>{roll}</p>'
'<p>{pitch}</p>'
'</div>'
'</div>'
'<div style="display: flex; gap: 20px; border-left: 1px solid #C0C0C0; padding-left: 20px;">'
'<div>'
'<p><b>Neutral</b></p>'
'<p><b>Happy</b></p>'
'<p><b>Angry</b></p>'
'<p><b>Surprised</b></p>'
'<p><b>Disgusted</b></p>'
'<p><b>Sad</b></p>'
'<p><b>Scared</b></p>'
'</div>'
'<div>'
'<p>{neutral}</p>'
'<p>{happy}</p>'
'<p>{angry}</p>'
'<p>{surprised}</p>'
'<p>{disgusted}</p>'
'<p>{sad}</p>'
'<p>{scared}</p>'
'</div>'
'</div>'
'</div></div>').format(face_value=face_value,
age=age_gender.get('age'),
gender="Female" if age_gender.get('gender') == 0 else "Male",
neutral=f"{emotion.get('neutral'):.2f}",
happy=f"{emotion.get('happy'):.2f}",
angry=f"{emotion.get('angry'):.2f}",
surprised=f"{emotion.get('surprised'):.2f}",
disgusted=f"{emotion.get('disgusted'):.2f}",
sad=f"{emotion.get('sad'):.2f}",
scared=f"{emotion.get('scared'):.2f}",
masked="Yes" if attribute.get('masked') == 1 else "No",
left_eye="Open" if attribute.get('left_eye_opened') == 1 else "Close",
right_eye="Open" if attribute.get('right_eye_opened') == 1 else "Close",
yaw=f"{angles.get('yaw'):.2f}",
roll=f"{angles.get('roll'):.2f}",
pitch=f"{angles.get('pitch'):.2f}",
)
html += item_value
html += '<hr style="border: 1px solid #C0C0C0; margin: 10px 0;"/>'
else:
html = "No face!"
return [html, json_result]
else:
return [result.text, {"resultCode": result.text}]
with gr.Blocks() as demo:
gr.Markdown(
f"""
<a href="https://recognito.vision" style="display: flex; align-items: center;">
<img src="https://recognito.vision/wp-content/uploads/2024/03/Recognito-modified.png" style="width: 8%; margin-right: 15px;"/>
<div>
<p style="font-size: 32px; font-weight: bold; margin: 0;">Recognito</p>
<p style="font-size: 18px; margin: 0;">www.recognito.vision</p>
</div>
</a>
<p style="font-size: 20px; font-weight: bold;">π Product Documentation</p>
<div style="display: flex; align-items: center;">
  <a href="https://docs.recognito.vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/05/book.png" style="width: 48px; margin-right: 5px;"/></a>
</div>
<p style="font-size: 20px; font-weight: bold;">π Visit Recognito</p>
<div style="display: flex; align-items: center;">
  <a href="https://recognito.vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/recognito_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://www.linkedin.com/company/recognito-vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/linkedin_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://huggingface.co/recognito" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/hf_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://github.com/recognito-vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/github_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://hub.docker.com/u/recognito" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/docker_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://www.youtube.com/@recognito-vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/04/youtube_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
</div>
<p style="font-size: 20px; font-weight: bold;">π€ Contact us for our on-premise ID Document Verification SDKs deployment</p>
<div style="display: flex; align-items: center;">
  <a target="_blank" href="mailto:hello@recognito.vision"><img src="https://img.shields.io/badge/email-hassan@recognito.vision-blue.svg?logo=gmail " alt="www.recognito.vision"></a>
<a target="_blank" href="https://wa.me/+14158003112"><img src="https://img.shields.io/badge/whatsapp-+14158003112-blue.svg?logo=whatsapp " alt="www.recognito.vision"></a>
<a target="_blank" href="https://t.me/recognito_vision"><img src="https://img.shields.io/badge/telegram-@recognito__vision-blue.svg?logo=telegram " alt="www.recognito.vision"></a>
<a target="_blank" href="https://join.slack.com/t/recognito-workspace/shared_invite/zt-2d4kscqgn-"><img src="https://img.shields.io/badge/slack-recognito__workspace-blue.svg?logo=slack " alt="www.recognito.vision"></a>
</div>
<br/>
"""
)
with gr.TabItem("Face Recognition"):
with gr.Row():
with gr.Column(scale=7):
with gr.Row():
with gr.Column():
image_input1 = gr.Image(type='pil')
gr.Examples(['examples/1.webp', 'examples/2.webp', 'examples/3.webp', 'examples/4.webp'],
inputs=image_input1)
with gr.Column():
image_input2 = gr.Image(type='pil')
gr.Examples(['examples/5.webp', 'examples/6.webp', 'examples/7.webp', 'examples/8.webp'],
inputs=image_input2)
verifyThreshold = gr.Slider(minimum=0, maximum=1, value=0.67, label="Verify Threshold")
face_recog_button = gr.Button("Face Recognition")
with gr.Column(scale=3):
with gr.TabItem("Output"):
recog_html_output = gr.HTML()
with gr.TabItem("JSON"):
recog_json_output = gr.JSON()
with gr.TabItem("Face Attribute"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type='pil')
gr.Examples(['examples/11.webp', 'examples/12.webp', 'examples/13.webp', 'examples/14.webp'],
inputs=image_input)
face_attr_button = gr.Button("Face Attribute")
with gr.Column():
with gr.TabItem("Output"):
detect_html_output = gr.HTML()
with gr.TabItem("JSON"):
detect_json_output = gr.JSON()
face_recog_button.click(compare_face, inputs=[image_input1, image_input2, verifyThreshold], outputs=[recog_html_output, recog_json_output])
face_attr_button.click(detect_face, inputs=[image_input], outputs=[detect_html_output, detect_json_output])
demo.launch(server_name="0.0.0.0", server_port=7860) |