import os
import gradio as gr
import requests
import json
import io
from gradio.components import Image
from PIL import Image as PILImage, ImageDraw, ImageFont # This import may be needed if you're processing images
from PIL import Image
from PIL import Image
import io
import base64
def face_crop(image, face_rect):
x = face_rect.get('x')
y = face_rect.get('y')
width = face_rect.get('width')
height = face_rect.get('height')
if x < 0:
x = 0
if y < 0:
y = 0
if x + width >= image.width:
width = image.width - x
if y + height >= image.height:
height = image.height - y
face_image = image.crop((x, y, x + width - 1, y + height - 1))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
return face_image
def pil_image_to_base64(image, format="PNG"):
"""
Converts a PIL.Image object to a Base64-encoded string.
:param image: PIL.Image object
:param format: Format to save the image, e.g., "PNG", "JPEG"
:return: Base64-encoded string
"""
# Save the image to a BytesIO buffer
buffer = io.BytesIO()
image.save(buffer, format=format)
buffer.seek(0) # Rewind the buffer
# Convert the buffer's contents to a Base64 string
base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
return base64_string
def compare_face(image1, image2, verifyThreshold):
try:
img_bytes1 = io.BytesIO()
image1.save(img_bytes1, format="JPEG")
img_bytes1.seek(0)
except:
return ["Failed to open image1", {"resultCode": "Failed to open image1"}]
try:
img_bytes2 = io.BytesIO()
image2.save(img_bytes2, format="JPEG")
img_bytes2.seek(0)
except:
return ["Failed to open image2", {"resultCode": "Failed to open image2"}]
url = "http://127.0.0.1:8000/compare_face"
files = {'image1': img_bytes1, 'image2': img_bytes2}
result = requests.post(url=url, files=files)
if result.ok:
json_result = result.json()
if json_result.get("resultCode") != "Ok":
return [json_result.get("resultCode"), json_result]
html = ""
faces1 = json_result.get("faces1", {})
faces2 = json_result.get("faces2", {})
results = json_result.get("results", {})
for result in results:
score = result.get('score')
face1_idx = result.get('face1')
face2_idx = result.get('face2')
face_image1 = face_crop(image1, faces1[face1_idx])
face_value1 = ('').format(base64_image=pil_image_to_base64(face_image1, format="PNG"))
face_image2 = face_crop(image2, faces2[face2_idx])
face_value2 = ('
').format(base64_image=pil_image_to_base64(face_image2, format="PNG"))
match_icon = ''
if score > verifyThreshold:
match_icon = ''
item_value = ('
Age
' 'Gender
' 'Mask
' 'Left Eye
' 'Right Eye
' 'Yaw
' 'Roll
' 'Pitch
' '{age}
' '{gender}
' '{masked}
' '{left_eye}
' '{right_eye}
' '{yaw}
' '{roll}
' '{pitch}
' 'Neutral
' 'Happy
' 'Angry
' 'Surprised
' 'Disgusted
' 'Sad
' 'Scared
' '{neutral}
' '{happy}
' '{angry}
' '{surprised}
' '{disgusted}
' '{sad}
' '{scared}
' 'Recognito
www.recognito.vision
📘 Product Documentation
🏠 Visit Recognito
🤝 Contact us for our on-premise ID Document Verification SDKs deployment