Spaces:
Build error
Build error
| import streamlit as st | |
| import numpy as np | |
| from sentence_transformers import SentenceTransformer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import spacy | |
| left_text = st.text_area('First', 'This is a test') | |
| right_text = st.text_area('Second', 'This is another test') | |
| st.toast("Loading spacy...") | |
| nlp = spacy.load("en_core_web_sm") | |
| st.toast("Loading rufimelo/Legal-BERTimbau-sts-base...") | |
| model = SentenceTransformer("rufimelo/Legal-BERTimbau-sts-base") | |
| st.toast("Legal-BERTimbau-sts-base: computing embeddings...") | |
| embeddings = model.encode([left_text, right_text]) | |
| st.toast("Legal-BERTimbau-sts-base: computing similarity...") | |
| similarity = cosine_similarity(embeddings[: 1], embeddings[1 :]) | |
| st.info("Legal-BERTimbau-sts-base: score ->") | |
| st.dataframe(similarity) | |
| st.toast("Loading nlpaueb/legal-bert-base-uncased...") | |
| model = SentenceTransformer("nlpaueb/legal-bert-base-uncased") | |
| st.toast("legal-bert-base-uncased: computing embeddings...") | |
| embeddings = model.encode([left_text, right_text]) | |
| st.toast("legal-bert-base-uncased: computing similarity...") | |
| similarity = cosine_similarity(embeddings[: 1], embeddings[1 :]) | |
| st.info("legal-bert-base-uncased: score ->") | |
| st.dataframe(similarity) | |