File size: 6,010 Bytes
8b95053
dc9ded5
b7bc425
 
8b95053
 
 
b7bc425
8b95053
 
 
 
b7bc425
8b95053
 
 
b7bc425
 
8b95053
 
 
 
 
 
 
b7bc425
 
 
 
 
 
 
 
 
 
 
 
 
8b95053
 
 
 
 
 
 
 
 
 
 
b7bc425
 
8b95053
 
 
 
 
 
 
 
 
 
 
dc9ded5
 
 
 
8b95053
 
 
 
 
 
dc9ded5
 
 
8b95053
 
 
 
 
dc9ded5
8b95053
dc9ded5
 
 
 
 
 
 
 
 
 
8b95053
 
 
 
dc9ded5
 
8b95053
 
 
dc9ded5
8b95053
dc9ded5
 
 
8b95053
 
 
 
 
dc9ded5
8b95053
dc9ded5
 
 
 
 
 
 
 
 
 
8b95053
 
b7bc425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b95053
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# app.py
from time import perf_counter
from io import BytesIO
from typing import List, Optional, Union

from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from pydantic import BaseModel, Field, HttpUrl
from PIL import Image
import uvicorn

from util import get_runner, SmolVLMRunner

app = FastAPI(title="SmolVLM Inference API", version="1.2.0")
_runner: Optional[SmolVLMRunner] = None


# ----------------------- Pydantic models -----------------------

class URLRequest(BaseModel):
    prompt: str = Field(..., description="Text prompt to accompany the images.")
    image_urls: List[HttpUrl] = Field(..., description="List of image URLs.")
    max_new_tokens: int = Field(300, ge=1, le=1024)
    temperature: Optional[float] = Field(None, ge=0.0, le=2.0)
    top_p: Optional[float] = Field(None, gt=0.0, le=1.0)

class DetectDescribeURLRequest(BaseModel):
    image_url: HttpUrl
    labels: Union[str, List[str]]
    box_threshold: float = 0.40
    text_threshold: float = 0.30
    pad_frac: float = 0.06
    max_new_tokens: int = 160
    return_overlay: bool = True
    temperature: Optional[float] = None
    top_p: Optional[float] = None


# ----------------------- Startup / health -----------------------

@app.on_event("startup")
async def _load_model_on_startup():
    global _runner
    _runner = get_runner()

@app.get("/")
def health():
    return {"status": "ok", "model": _runner.model_id if _runner else None}


# ----------------------- Core VLM endpoints -----------------------

@app.post("/generate")
async def generate_from_files(
    prompt: str = Form(...),
    images: List[UploadFile] = File(..., description="One or more image files."),
    max_new_tokens: int = Form(300),
    temperature: Optional[float] = Form(None),
    top_p: Optional[float] = Form(None),
):
    if not images:
        raise HTTPException(status_code=400, detail="At least one image must be provided.")

    t_req_start = perf_counter()

    # Read files
    t_load_start = perf_counter()
    blobs = []
    for f in images:
        if not f.content_type or not f.content_type.startswith("image/"):
            raise HTTPException(status_code=415, detail=f"Unsupported file type: {f.content_type}")
        blobs.append(await f.read())
    pil_images = _runner.load_pil_from_bytes(blobs)
    t_load_end = perf_counter()

    text, inner_metrics = _runner.generate(
        prompt=prompt,
        images=pil_images,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        return_stats=True,
    )

    t_req_end = perf_counter()
    metrics = {
        **inner_metrics,
        "request_ms": {
            "image_load": round((t_load_end - t_load_start) * 1000.0, 2),
            "end_to_end": round((t_req_end - t_req_start) * 1000.0, 2),
        },
    }
    return {"text": text, "metrics": metrics}


@app.post("/generate_urls")
async def generate_from_urls(req: URLRequest):
    t_req_start = perf_counter()

    if len(req.image_urls) == 0:
        raise HTTPException(status_code=400, detail="At least one image URL is required.")

    t_load_start = perf_counter()
    pil_images = _runner.load_pil_from_urls([str(u) for u in req.image_urls])
    t_load_end = perf_counter()

    text, inner_metrics = _runner.generate(
        prompt=req.prompt,
        images=pil_images,
        max_new_tokens=req.max_new_tokens,
        temperature=req.temperature,
        top_p=req.top_p,
        return_stats=True,
    )

    t_req_end = perf_counter()
    metrics = {
        **inner_metrics,
        "request_ms": {
            "image_load": round((t_load_end - t_load_start) * 1000.0, 2),
            "end_to_end": round((t_req_end - t_req_start) * 1000.0, 2),
        },
    }
    return {"text": text, "metrics": metrics}


# ----------------------- Detect & Describe endpoints -----------------------

@app.post("/detect_describe")
async def detect_describe(
    image: UploadFile = File(..., description="One image file (image/*)"),
    labels: str = Form(..., description='Comma-separated phrases, e.g. "a man,a dog"'),
    box_threshold: float = Form(0.40),
    text_threshold: float = Form(0.30),
    pad_frac: float = Form(0.06),
    max_new_tokens: int = Form(160),
    temperature: Optional[float] = Form(None),
    top_p: Optional[float] = Form(None),
    return_overlay: bool = Form(True),
):
    if not image.content_type or not image.content_type.startswith("image/"):
        raise HTTPException(status_code=415, detail=f"Unsupported file type: {image.content_type}")

    try:
        raw = await image.read()
        pil = Image.open(BytesIO(raw)).convert("RGB")
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"Failed to read image: {e}")

    out = _runner.detect_and_describe(
        image=pil,
        labels=labels,  # comma-separated string OK
        box_threshold=box_threshold,
        text_threshold=text_threshold,
        pad_frac=pad_frac,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        return_overlay=return_overlay,
    )
    return out


@app.post("/detect_describe_url")
async def detect_describe_url(req: DetectDescribeURLRequest):
    try:
        pil = _runner.load_pil_from_urls([str(req.image_url)])[0]
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"Failed to fetch image: {e}")

    out = _runner.detect_and_describe(
        image=pil,
        labels=req.labels,
        box_threshold=req.box_threshold,
        text_threshold=req.text_threshold,
        pad_frac=req.pad_frac,
        max_new_tokens=req.max_new_tokens,
        temperature=req.temperature,
        top_p=req.top_p,
        return_overlay=req.return_overlay,
    )
    return out


# ----------------------- Entrypoint -----------------------

if __name__ == "__main__":
    # Run with: python app.py  (or: uvicorn app:app --host 0.0.0.0 --port 8000)
    uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=False)